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John Zachman introduced a framework  for 
information  systems architecture (SA) that  has 
been widely  adopted  by  systems analysts and 
database designers. It provides a taxonomy  for 
relating the concepts that describe the real world 
to the concepts  that  describe an information 
system  and  its  implementation.  The  ISA 
framework  has a simple  elegance  that  makes  it 
easy to remember,  yet it draws attention to 
fundamental distinctions that are often 
overlooked in systems  design.  This  paper 
presents the framework  and  its  recent extensions 
and  shows  how  it can be  formalized  in the 
notation of conceptual graphs. 

T he world contains  entities,  processes,  loca- 
tions,  people,  times, and purposes. Com- 

puter  systems  are filled with  bits,  bytes,  numbers, 
and the  programs  that  manipulate  them. If the 
computer is to  do anything useful, the  concrete 
things in the  world  must  be  related  to  the  abstract 
bits in the  computer.  Zachman’s  framework  for 
information systems  architecture (ISA) makes  that 
link. It  provides  a  systematic  taxonomy of con- 
cepts for relating things in the world  to the rep- 
resentations in the  computer.  It is not  a  replace- 
ment for other programming tools, techniques, or 
methodologies. Instead, it provides  a way of 
viewing a  system from many different perspec- 
tives and showing how they  are all related.’ 

Most programming tools  and  techniques  focus on 
one  aspect  or  a  few  related  aspects of a  system. 
The  details of the  aspect  they  select  are  shown in 
utmost  clarity,  but  other  details  may  be  obscured 
or forgotten. As examples,  consider  each of the 
following techniques: 

Flowcharts, which were introduced by John 
von  Neumann in 1945, are  the  oldest and still 
most widely used programming aid. They  focus 
on the  operations  performed  by  a  computer and 
their temporal  sequence.  They  are fine for 
showing algorithms, but  the  data  structures  pro- 
cessed by  the algorithms are only mentioned 
incidentally as  they  are being operated upon. 
Entity-relationship diagrams are  a popular 
graphic  notation for showing entity  types,  their 
attributes,  and  the  relations  that  connect  them. 
They  are fine for showing certain  kinds of con- 
straints,  but  they  cannot  show all constraints, 
and they ignore the  operations  performed  by 
and on the  entities. 
Relational databases  emphasize  tables  and  the 
operations  for manipulating them to derive an- 
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swers  to complex  queries.  They  are  excellent 
for  representing highly repetitive  business  data 
that originate in forms  and  tables,  but  they  are 
less well-suited to  the irregular data  structures 
that  occur in graphics  and engineering designs. 
Object-oriented  systems  emphasize  objects and 
the  operations  that  may  be performed by and  on 
them.  They are excellent  for  representing  con- 
straints  and  operations  that  apply  to  each  object 
and  its  parts,  but  current  object-oriented  data- 
bases  are  not as good as relational systems for 
handling complex  queries. 

Each of these  techniques is specialized for  a dif- 
ferent  purpose.  By  concentrating on one  aspect, 
each  technique  loses sight of the  overall informa- 
tion system  and how it relates to  the enterprise 
and  its  surrounding  environment.  The  purpose of 
the ISA framework is to show how everything fits 
together. It is a  taxonomy  with 30 boxes  or cells 
organized  into six columns (labeled A through E) 
and five rows  (numbered 1 through 5) .  Instead of 
replacing other  techniques, it shows how they fit 
in the overall  scheme.  Flowcharts,  for example, 
may be  suitable  for describing the cell in Column 
B, Row 5 (the  process  column,  component  row in 
the  framework);  and  entity-relationship  (E-R) di- 
agrams  may  be  acceptable  for Column A, Row 3 
(the  data  column,  system  model  row).  But  the ISA 
framework  shows how the cells in different col- 
umns and rows  relate  to  one  another. 

For  any  one of the 30 cells in the ISA framework, 
it is possible to develop  a special notation  that is 
ideally suited to  the subject  matter  described in 
that cell. But to relate all  of the  cells to  one an- 
other,  there  should  be  a  common language that 
can  describe all of them and their interrelation- 
ships. A natural language such as English is ca- 
pable of describing  everything in every cell. Yet 
English, which may be good for discussing design 
decisions in the early  stages of system  develop- 
ment, is not as precise  and implementable as  the 
more specialized notations.  Symbolic logic is pre- 
cise  and  general enough to describe  anything  that 
can  be implemented on  a digital computer  and 
even  the  computer itself. But the usual predicate 
calculus  notation for logic tends  to become un- 
readable,  even for simple examples.  Conceptual 
graphs  are  a  readable  graphic  notation  for logic 
that  is designed for translations  to  and from nat- 
ural  language^.^,^ They  can  describe  anything in 
any cell of the ISA framework,  they  have  a for- 
mally defined mapping to and from other  forms of 
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logic, and  they  can  coexist with the  more  spe- 
cialized notations, including flowcharts, E-R di- 
agrams, and object-oriented hierarchies. 

Because of the  generality  and  readability of con- 
ceptual  graphs,  the American National  Standards 
Institute (ANSI) X3H4.6 Task  Group  is using them ’ 

as a  basis  for  the  normative language of the  con- 
ceptual  schema  for  Information  Resource Dictio- 
nary  Systems (IRDS).’ They invited John  Sowa, 
the designer of the  conceptual  graph  system, to 
participate in the  development of the IRDS stan- 
dards.  They  also invited John  Zachman,  the  au- 
thor of the ISA framework,  to  present his frame- 
work  and  its  recent  extensions.  In writing this 
paper,  the  authors  have applied conceptual 
graphs to  the description of the ISA framework 
and its extensions. 

Within IBM, the ANSI IRDS standards and Zach- 
man’s ISA framework  are especially important for 
AD/Cycle*.6” The AD/Cycle perspectives of the 
enterprise model, the information model, and the 
technology model were influenced by  the  three 
middle rows of the ISA framework. The  current 
information model is consistent with the 1988 
ANSI IRDS standards,  which  are  based  on E-R di- 
agrams. The ANSI IRDS committee  must  make  fu- 
ture  standards upward compatible with the  cur- 
rent  ones,  but  extensions  beyond  E-R diagrams 
are  needed to accommodate new developments, 
especially in object-oriented  systems.  Concep- 
tual graphs  can  provide  those  extensions in a form 
that is compatible with the ISA framework. 

Overview of the framework 

When applied to an information system, the word 
architecture is a metaphor that compares the con- 
struction of a computer system to  the construction 
of a house. The ISA framework is an elaboration of 
that metaphor. It compares the perspectives in de- 
scribing an information system to  the perspectives 
produced by an architect in designing  and con- 
structing a building: 

Scope-The first architectural  sketch is a  “bub- 
ble chart,’’ which depicts in gross  terms  the 
size,  shape,  spatial  relationships,  and  basic  pur- 
pose of the final structure.  In  the ISA frame- 
work, it corresponds  to an  executive  summary 
for  a  planner or investor  who  wants an estimate 
of the  scope of the  system,  what it would cost, 
and how it would perform. 
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Table 1 Characteristics  of  framework  rows 

Enterprise  or business model-Next are  the  ar- 
chitect’s drawings that  depict  the final building 
from the perspective of the  owner,  who will 
have  to live with it in the daily routines of bus- 
iness. They  correspond to  the  enterprise (bus- 
iness) model, which  constitutes  the design of 
the business  and  shows the business  entities 
and  processes  and how they  interact. 
System model-The architect’s  plans  are  the 
translation of the  drawings  into  detailed  speci- 
fications from  the designer’s perspective. They 
correspond to  the  system model designed by a 
systems  analyst  who  must  determine  the  data 
elements  and  functions  that  represent  business 
entities  and  processes. * 
Technology model-The contractor  must  re- 
draw  the  architect’s  plans to  represent  the 
builder’s perspective,  which  must  consider the 
constraints of tools,  technology,  and  materials. 
The builder’s plans  correspond to  the technol- 
ogy model, which  must  adapt  the information 
system model to  the details of the programming 
languages, I/O devices, or  other technology. 
Components-Subcontractors work  from  shop 
plans  that specify the  details of parts  or  sub- 
sections.  These  correspond to  the detailed 
specifications that  are given to programmers 
who  code individual modules  without being 
concerned  with  the  overall  context  or  structure 
of the  system. 

These five descriptions  correspond to  the five 
rows of the ISA framework.  Figure 1 shows  the 
original version of the  framework in which  three 
columns  describe  the  data,  function,  and  network 
at  each of the five levels. Inside the 15 cells are 
examples of notations used to describe the corre- 
sponding perspectives on an information system. 

The  three  columns in Figure 1 represent  the  data, 
function,  and  network of an information system. 
For  each of the five rows, Column A shows  what 
entities  are  involved, Column B shows  the  func- 
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tions  performed,  and Column C  shows  the  loca- 
tions  and  interconnections. For physical  pro- 
cesses in architecture  and engineering, Column A 
represents  the material, Column B the function, 
and Column C  the  geometry. Each row  represents 
a different role or perspective,  a different set of 
constraints, and therefore different model struc- 
tures.  Table 1 shows  the  perspectives,  con- 
straints, and models for the first three  columns 
that  were  described in Zachman’s original frame- 
work. ’ 
The  constraints  are additive; that is, the  con- 
straints of a lower row  are  added to  the model of 
a higher row  to  produce  a  new  model  at  a  new 
perspective. Ideally, the  new model should not  be 
so dissimilar that  the higher-row model cannot be 
inferred (or reverse  engineered) from the  new 
lower-row model. This  is  the challenge of quality 
management: to  ensure  that as the model trans- 
formations  take  place  (that  is, as  each model is 
structurally  changed  through the  successive  ap- 
plication of additional constraints)  the original 
purpose of the  business  is  not so obscured  that  the 
business  requirements are not recognizable in the 
end  product. 

In practice,  a  constraint in a lower row might be 
inconsistent with the model in the  next higher 
row. Then  the  designers  who  are  responsible  for 
the  two  rows  must initiate a dialog to determine 
what  must be changed  and to  ensure that no gap 
in expectations  exists  between  the different per- 
spectives. No matter how desirable or aestheti- 
cally  attractive  a  particular  feature might be, if it 
violates  the  laws of physics, it cannot  be imple- 
mented.  Therefore, the designers  must notify the 
owner  and explicitly negotiate an alternative. 

The  columns of the  framework  represent different 
abstractions from or different ways  to  describe 
the  real world. The  reason  for isolating one  vari- 
able  (abstraction) while suppressing all others is 
to  contain  the  complexity of the design problem. 
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Figure 1 The original ISA framework 
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Figure 2 Detailed  cell  metamodel 
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For example, it is complicated  enough  to design 
the  process-to-process  relationships of an  enter- 
prise without attempting  to  address the entity-to- 
entity  and  location-to-location  design  issues  at 
the  same  time.  However,  since the  processes,  en- 
tities,  and  locations are all abstractions of the 
same  enterprise,  each is related to all of the  oth- 
ers.  Therefore, during the design of any  one,  the 
structural integrity of the  others  could  undoubt- 
edly be impacted.  The challenge here is to design 
each while understanding  the  impact  on  the in- 
tegrity of  all others  to avoid being surprised by 
undesirable side effects appearing long after it is 
possible to contain  them.  The  evidence of this 
wisdom (or lack thereof) is seen in the majority of 
applications portfolios of today.  For 50 years, 
we unknowingly optimized the  function  at  the 
expense of the  data, and only now are we begin- 
ning to  discover  the  considerable, negative side 
effects. 

Although the original framework suggested mod- 
eling constraints in each of the 15 cells, it did not 
include a formal specification language that would 
be suitable for detailed system  design or  for pop- 
ulating a  repository  for AD/Cycle or  other com- 
puter-aided software engineering (CASE) tools. 
E-R diagrams are  one specification language that 
has been used to  describe  the ISA framework  and 
thereby  constitute  the basis for  a  repository 
model which could, in turn,  store  the  enterprise 
models. As an  example,  Figure 2 represents  an 
E-R style of definition for  several of the  frame- 
work cells. 

When the  framework was first defined,' it was 
fairly easy  to find examples of all of the cells in the 
data  and  process  columns.  Creative work was 
even  done in the  network column when the  con- 
cepts of distributed  processing  were first popu- 
larized.  However,  this  work was not widely 
adopted by the  practitioners in the  data  process- 
ing community.  The  advent of workstation  tech- 
nology, client-server  concepts,  and  distributed 
systems is once again focusing attention  on  the 
network issues,  and it  is likely that  formalisms 
will  begin to  proliferate as remote  processing  and 
storage become a  reality. In any case, examples 
of many of the cells of the original three-column 
framework  were available either in the practicing 
or theoretical  communities  to empirically validate 
the  framework cells as they  were originally de- 
scribed. 
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Figure 3 Sample organization graphic 
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The  three  columns in Figure 1 correspond to  the 
three English question  words what,  how, and 
where. For  each of the five rows, Column A 
shows  what  entities  are  involved, Column B 
shows how they  are  processed,  and Column C 
shows  where  they  are  located.  Since  the original 
ISA framework  version was published in 1987, it 
has  been  extended  by  considering  the  other  three 
question  words in English: who, when, and why. 
Each of these  words  directs  attention  to  a differ- 
ent  focus on each of the five rows: who  works 
with  the  system,  when  events  occur, and why 
these  activities  are taking place. The six questions 
for  each of the five rows lead to 30 different per- 
spectives on an information system. 

Few formalisms, at least in the  traditional  data 
processing  community, are available for  the  who, 
when, and why column cells. Some formalisms 
exist in other disciplines, or  even in some of the 
very specialized (but  less  generally  understood) 
data  processing  circles.  But  their  general unavail- 
ability causes  the new cell descriptions to  be  more 
theoretical  and  less empirical. Therefore, it is im- 
portant  to understand  and rigorously abide by  the 
rules of the  framework while hypothesizing the 
contents of the  cells of the  other  three columns. 
The lack of commonly  accepted  formalisms  for 
these  columns  also  means  that  the terminology is 
not  based on long-established traditions. As the 
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state of the  art  advances, new insights will be 
gained, and the terminology may  become  more 
precise  and  standardized. Until then,  the  names 
of the cell contents  used in this  paper should be 
considered  as suggestive, but  not definitive. 

The people (who) column. It is useful to  abstract 
the  concept of people out of the real-world en- 
terprise  because of the significance of designing 
the organizational infrastructure or  the people- 
to-people  relationships of the  enterprise. The  or- 
ganization design challenge has  to  do with the 
allocation of work  and  the  structure of authority 
and responsibility. Therefore,  the  basic  columnar 
model is people-work-people,  and  the  classic  or- 
ganization chart is a  graphic  depiction of the  basic 
model. See  Figure 3. 

The vertical dimension of the  graphic  represents 
the delegation of authority, and the  horizontal di- 
mension represents  the assignment of responsi- 
bility. Classic  organization charts  do not usually 
attempt to display the definition of the  authority 
work  product or  the functional (or responsibility) 
work  product.  These  work definitions, if they  are 
defined at all, are  presented in text  as  supplemen- 
tary  documents.  However, if it is  assumed  that 
organizations  and  work design were perceived  to 
be important enough to ascribe engineering dis- 
cipline to them, it is not  inconceivable  that  a 
graphic formalism in the  order of Figure 3 could 
be  developed in support of actual  organization 
design. 

With regard to  the diagram in Figure 3, the  orga- 
nizational dynamics  community defines two 
styles of work allocations: markets  and  hierar- 
chies. In brief, an  enterprise will form into  a  free 
market  structure if the  nature of the  transaction 
between two organization  units  is simple, well- 
defined, and universally  understood. In this  case, 
the  organization  (or  person) with work  to assign 
would survey all possible  workers  to find one  who 
is acceptable in terms of availability and  cost. 
This  method is much like a  stock  buyer who scans 
the pool of stockbrokers  to find one  who will ex- 
ecute  a  buy within an  agreeable time and for  a 
reasonable  fee. 

In  contrast,  when  the  intraorganizational  trans- 
action is complex,  not well-defined, and  not uni- 
versally  understood,  the  enterprise will establish 
a  hierarchy,  that is, a  regulatory  organization  that 
will arbitrarily define the  work  product,  the 
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Table 3 Contents of cells in the time (when)  column 

Row Perspective Cell Example Event Cyele 

1 Planner List of events Major event Major cycie 
2 Owner Master schedule Business event Business cycle 
3 Designer Processing  structure System event Processing cycle 
4 Builder Ontrot architecture Execute Component c y l e  
5 Subcontractor Timing definition Interrupt Machine cycle 

schedule,  and  the  cost  that  connects  the  subor- 
dinate  organizations.  This  method is much like an 
oil company  that  arbitrarily defines the refining 
product  slate,  schedules,  and  transfer pricing of 
the  product from the refinery as it is  transferred 
to  the wholesale  or retail distribution organiza- 
tion. 

There is no  requirement  that  either  the  entity  that 
allocates  the  work or  the  one  to whom  work  is 
allocated be an  organization  or  a  person.  It may 
well be  a machine or  even  some  software  agent, 
as in artificial intelligence systems.  Therefore, in- 
stead of specifying the  columnar  abstraction  en- 
tity as an  organization,  person, or  user, it seems 
more  appropriate  to  select  a  generic  name like 
agent  that might apply to humans or nonhumans. 

The  connector  entity,  work,  should  probably  be 
interpreted to mean work  product to avoid con- 
fusing it with the  concept of process  or function 
that falls within the purview of the  process col- 
umn. Further,  work  product would be  a kind of 
user  view of materials  or  process  inputs/outputs. 
To avoid any confusion between  the  concepts of 
work  products and inputs/outputs, it would be 
useful to change  the original name of the  connec- 
tor  entity in the  process column from input/output 
to argument,  the  mathematical  term  for input to a 
function  that  is  the  object of a  transformation as 
inf(x) = K, wherefis  the  transformation,x is the 
input argument,  and K is the  output. 
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Table 2 shows  the kind of information that would 
be found in each of the  rows of the  people (who) 
column.  The meaning of the entities in the column 
changes with the  change of perspective from row 
to row,  and  their meaning is consistent with the 
other column cells in the same row. That  is, the 
new cells are  consistent with the  overall  frame- 
work,  vertically and horizontally. 

The  time  (when)  column. Time is  abstracted  out of 
the real world  to design the  event-to-event rela- 
tionships  that  establish the performance  criteria 
and quantitative levels for  enterprise  resources. 
For example, from Event 1, product  announce- 
ment at time to ,  until Event 2, first customer  ship 
at timet,, there is a  duration ( t l  - to ) .  The length 
of the  duration  establishes  the  external commit- 
ments of the  enterprise as well as  the resource 
levels required to  meet  the  commitments. In gen- 
eral,  the  shorter  the  duration,  the  more  resources 
required to  meet  the  commitments.  The longer 
the duration,  the  less  resources  required  to  meet 
the commitments. 

Figure 4 is  an  example of a  graphic  representation 
that might be  appropriate for describing  the time 
characteristics of an  enterprise  where  the  vertical 
axis is  the  control axis and the  horizontal  axis is 
the  duration axis. The  points in time are displayed 
as circles,  and  the  durations  are  shown as cycles. 
Table 3 lists  the kind of information that would be 
found in each of the  cells of the  when column. 
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Figure 4 Sample  time-model  graphic 
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Table 4 Contents of cells in the  motivation (why) COlUmn 

ROW Perspective Cell Example Ends Means 

1 Planner Objectives list Major objectives Major strategies 
2 Owner Business plan Business objectives Business strategy 
3 Designer Knowledge Criterion Option 

4 Builder  Knowledge  Condition  Action 
architecture 

Subcontractor 
design 

Knowledge 
definition 

Subcondition Step 

representations of goal-subgoal trees  are used in 
game-playing programs and planning programs in 
artificial intelligence. 

The cell contents in the motivation column as  de- 
rived according to the  framework  rules  represent 
the  ends-means-ends motivation shown in Table 
4. 

The  complete six-column framework is shown in 
Figure 6. 

To illustrate  the  extended  framework with all six 
columns,  Figure 6 shows  the kinds of descriptions 
that go into  each cell. Figure 7 is a  hypothetical 
case, showing English descriptions of some of the 
data,  functions,  network,  organization,  sched- 
ules, and strategies of the Oz Car Registration 
Authority (OCRA). These  descriptions  were  de- 
rived from the specification of a  car registration 
system  that  was used to compare  several different 
methodologies for conceptual  schemas. l1 

A  natural language such  as English is universal in 
the  sense  that it can describe anything that  can  be 
described.  Yet  natural languages have  potential 
ambiguities. Those ambiguities are  both  a help 
and  a  hindrance. In the  early design stages,  they 
allow decisions to  be deferred until further anal- 
ysis  has  been done. But in the  later  stages,  they 
prevent  the  results from being compiled automat- 
ically into  executable  code.  The  example in Fig- 
ure 7 shows  the use of English in an early design 
stage.  E-R diagrams are  a more formal notation 
that  can  represent  some of the information ex- 
pressed in English, but  not all of it. Symbolic 
logic, in either  the  predicate  calculus  or  the  con- 
ceptual  graph  notation, is both formal and uni- 
versal: it can  describe  everything  that can be de- 
scribed, and it can  be  translated  into  executable 
code. 
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Rules of the framework 

The  previous two sections of this  paper  have 
shown  examples of the ISA framework and the 
contents of each cell. This  section  presents  the 
rules of the  framework in a  more  abstract  way. 
The  reader may find  it helpful to look back  at  the 
examples in order  to get a  clearer  understanding 
of the rules. 

Rule 1. The columns have no order. Order implies 
priorities. It  creates  a  bias  toward  one  aspect  at 
the expense of others. Traditional programmers, 
for  example,  tend to have  a  bias  toward function. 
They usually prefer to  see the  function column 
first in the  framework.  They  start by designing 
algorithms that implement the  function and leave 
the  data as an  afterthought. In fact,  they may even 
claim that  there is no need to expend  resources  on 
defining other  models;  that  is,  the functional or 
process models are  adequate in themselves.  As  a 
result, all other  aspects would be  (inadvertently) 
ignored or  suboptimized. 

By  the  same  token,  programmers from the  data 
community  prefer  that  the  data column be  or- 
dered first in the  framework  because  history  has 
proved  that if the  data  are not designed first, they 
will invariably be compromised  (suboptimized). 
By implication, process and network would be 
suboptimized in the  interest of preserving  the in- 
tegrity of the  data  structure.  There  are also those 
who would claim that the network column should 
be first because  the location of the  data  and  pro- 
cesses really drives  the design; they would cause 
the  other  aspects  to  be  suboptimized.  Equally, 
others might plausibly argue that  the people, 
time, or motivation column should be first. 

In  any  case,  there is no natural  order  to  the  col- 
umns. Order or  sequence implies method, which 
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data column, Column A, for example,  has  the 
simple basic model entity-relationship-entity. 
The columnar  variable is entity, and the  connec- 
tor  is relationship. 

The  basic model for each column is actually  a 
generic  metamodel.  It is generic  because it is the 
same for each cell in the column. It is “meta” 
because it is a model of the  enterprise model. For 

example, the enterprise model in Cell A2 might be 
comprised of the  sequence:  employee  related to 
organization  related to  customer related  to  prod- 
uct. The  metamodel of this model is  the abstrac- 
tion entity-relationship-entity. In a similar fash- 
ion, each column has  a simple, basic model that 
constitutes  the  generic  metamodel  for  that  col- 
umn. Table 5 shows  examples  for  Columns A, B, 
and C. 

Rule 3. The basic model of each column must be 
unique. Uniqueness is essential  for  any useful 
classification scheme.  Therefore, no entity  or 
connector in the  basic,  columnar model is re- 
peated,  either in name  or in concept. For exam- 
ple, entity  and  relationship  are  unique  to Column 
A. Function  and argument are  unique to Column 
B. Entity is not  equivalent  to  function, and rela- 
tionship is not  equivalent to argument.  They  may 
all be  related  to  one  another  because  they  are all 
abstractions of the  same real-world enterprise, 
but  they  are all separate  and unique concepts. 

The same logic applies to all of the  basic, colum- 
nar models. That is, each  basic model is unique. 

Rule 4. Each row represents a distinct, unique 
perspective. This rule is most  easily  demon- 
strated in Rows 2, 3, and 4 which represent  the 
owner’s, designer’s and builder’s perspectives. 
Each  perspective is different in that it is dealing 
with a different set of constraints  relevant  to  that 
perspective. For example: 

Owner:  Deals  with usability constraints,  both 
aesthetic  and utilitarian in the  conceptual  view 
of the  end  product. 
Designer: Deals  with  the design constraints- 
the  laws of physics or  nature in the logical view 
of the  end  product. 
Builder: Deals with the  construction  con- 
straints-the state of the  art in methods and 
technologies in the physical view of the  end 
product. 

Because  each  perspective reflects a different set 
of constraints,  the meaning (or definition) of the 
basic  entity in a given column will change from 
row to row. For example, entity  has  one meaning 
for  the  owner,  another  one  for  the  designer, and 
yet a different one for the builder. Table 6 shows 
examples of those differences for Column A. 

Since  each  basic  entity  means  something different 
from the perspectives of the different cells in the 
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Figure 7 The OCRA example in the six-column framework 

Table 5 Components  of the generic metamodels  for  Columns A, B, and C 

Column A Column B column c 
Data (what) Function (how) Network [where) 

, “ “  

Basic entity Entity Function Node ” ‘ 

Connector Relationship Argument Line 

Table 6 Changes in the meaning of entity  from  row  to 
row  of  Column A 

Row Ferspectlve Basic Entlty 

Designer  Data  entity  (logical  representation) 
Builder  Technolagy  entity 

(physical  representation) 

data  column,  the  semantic  contents of the cells in 
the column are different, which means, in turn, 
that  the  structure of the cell models in the same 
column is likely to  be different. Note how the 
meaning changes  for all rows  and all columns of 
Figure 6. 

Rule 5. Each cell is unique. Since  each column 
has  a  unique  basic model that  makes  each column 
unique, and  since  each row has  a different per- 
spective  that  makes  the meaning of the  basic 
model unique  to  each  row,  each cell in the  frame- 
work is unique. That is, no  meta  entity  can  show 
up in more  than  one cell. For example: 

Business  entity  can  only  be found in Cell A2. 
Data  entity  can  only  be found in  Cell  A3. 

9 Business  process  can  only  be found in Cell B2. 
Application function  can  only be found in Cell 
B3. 

Therefore, the ISA framework  serves as a conve- 
nient classification scheme or “periodic  table”  for 
information entities.  Like chemical elements, 
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these  entities  may  be  combined in endless  ways to 
produce  compounds  or information systems of 
interest to an  enterprise. 

A corollary  to  the rule that  each cell is unique 
(that is, each cell represents  a different abstrac- 
tion and different perspective-therefore differ- 
ent  motivation, different purpose, different design 
issue, different constraints,  etc.) is that different 
techniques  and different graphic  representations 
are  appropriate  for different cells. This  corollary 
explains  the  plethora of information systems (11s) 
design formalisms that  have emerged over  the 
years.  They  are all likely to  be relevant for some 
purposes,  but  they  each  address  a different set of 
issues,  and  none is completely  adequate in itself. 
Also, when the formalism for  any  one cell is  ex- 
panded to  incorporate  the  notation from another 
cell in an attempt  to  enrich  the formalism, it com- 
plicates  the design problem and may lead to in- 
advertent  suboptimization of the  other  indepen- 
dent  variable. For example, in some application 
designs, it may  seem  appropriate to show  a  data 
store  on  a  data flow diagram for Cell B3. Yet it 
may  not  be  clearly  understood  that  the  data  store 
is actually  an aggregation of attributes of entities 
from  the logical data model of Cell A3. There is 
a risk that  the designer may design a  customized 
file to  satisfy  the local requirements of the  pro- 
cess. In this  event,  the integrity of the  data  as 
specified by  the logical data model may  be  com- 
promised, and the  data  are unlikely to  be reused 
or  shared by  any other  process. 

The uniqueness of each of the cells also explains 
the  plethora of methodologies that  have  evolved. 
It would appear  that  a specific methodology elects 
to produce  some  set  (or  subset) of cells in some 
sequence.  The  sequence  determines  the  value 
system being applied in making the design trade- 
off decisions within the cell. That is, the  structure 
of a cell can  be derived from the cell above,  the 
cell below, or a cell in the  same row. The cell that 
a methodology causes  to  be  produced first is 
likely to  have  a  strong influence on  the design 
tradeoffs made in the  structure of a  subsequently 
designed cell. 

Rule 6. The composite or integration of all  cell 
models in one row constitutes a complete model 
f.om theperspective of that row. This rule derives 
from the  fact  that  any one cell of one column is 
merely  a single abstraction of reality. Therefore, 
the  sum of all cells in a given row is the most 
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complete  depiction of reality from the  perspective 
of that row. The significance of this rule is that as 
additional columns  are defined, each  new cell de- 
scription  must  be  consistent with the  perspective 
of the row. That  is,  each cell in a given row can 
be defined and  has  relevance  independent of any 
other  cells in the  row, yet each cell is but  one 
abstraction of the  same reality. Therefore,  at  a 
minimum, each cell is related  to  every  other cell 
in the  same  row. In some  cases,  there  may  even 
be  a  dependence upon other  cells in the row. In 
these  cases,  a  change in the  structure of one cell 
would likely have  some kind of effect in any  other 
cell where  a  dependency  exists.  This  not  only 
holds true  across  a  row,  but it most  certainly 
would be  true within a column where, by defini- 
tion,  there is a  dependency  between  any  one cell 
and  the cell above and the cell below. Thus,  a 
change in any given cell would likely affect the 
cell above,  the cell below, and potentially, other 
cells in the  same row where  a  dependency  exists. 

It is worthwhile noting that if the  nature of the 
dependency  between cells could be understood 
and stored in the  repository along with  the cell 
models, it would constitute  a  very powerful ca- 
pability for understanding  the  total impact of a 
change  to  any  one of the  models, if not  a  capa- 
bility for managing the  actual assimilation of the 
changes. 

Rule 7. The  logic is recursive. The  framework 
logic can  be used for describing virtually  any- 
thing, certainly  anything  that  has  an  owner,  de- 
signer,  and builder who make use of material, 
function,  and  geometry.  The logic was initially 
perceived by observing  the design and  construc- 
tion of buildings. Later it was  validated by ob- 
serving  the engineering and manufacture of air- 
planes.  Subsequently it was applied to  enterprises 
during which the initial material  on  the  framework 
was published. In the  current  paper, it is being 
applied to  an information systems  “enterprise” 
wherever  the  “meta”  concept is being used. Sim- 
ilarly, it could be applied to  a CASE tool manu- 
facturer. 

These four applications of the  framework were 
selected  for  illustration,  not  by  accident,  but  be- 
cause  the  examples  are  related.  Examination of 
the  framework graphically depicts  the relation- 
ship  between  the  product,  the  enterprise, infor- 
mation systems, and the CASE tool manufacturer. 
It  shows  that: 
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Figure 8 The  enterprise  framework  as  a  metaframework 

PRODUCT 
FRAMEWORK 

The  owner of the  product is the  customer of the 

The  owner of the  enterprise  is  the  customer of 

The  owner of information systems  is  the  cus- 

enterprise. 

information systems. 

tomer of the CASE tool  manufacturer. 

Similarly, 

The  enterprise  transforms  the owner’s view of 
the product,  through  a  series of product model 
transformations,  into  the  product itself. 
The I/S organization  transforms  the  owner’s 
view of the  enterprise,  through  a  series of en- 
terprise model transformations,  into  the  enter- 
prise itself. 
The CASE tool manufacturer  transforms  the 
owner’s view of the I/S organization,  through  a 
series of 11s model transformations,  into  the I/S 
organization itself. 

Since  the  product is related to  the enterprise, 
which  is  related  to the I/S organization,  which  is 
related to  the CASE tool  manufacturer,  the  respec- 
tive  frameworks are also  related. 

For example, Cell A2 of the  enterprise  framework 
(owner’s row,  data  column) is a model of the 
product  framework  because in manufacturing the 
product,  the  enterprise,  by definition, is produc- 
ing all of the  cells of the  product  framework. 
Therefore,  the  semantic model of the  enterprise 
would  necessarily  have to incorporate all of the 
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design artifacts  required to build the  product, plus 
extensions to  the model to describe  the  enterprise 
resources being used in the manufacturing pro- 
cess.  Thus, Cell A2 is a  metamodel of the  product 
framework with extensions  that include the en- 
terprise  resources.  See  Figure 8. 

Cell B2 of the  enterprise  framework (owner’s 
row,  process  column) is a model of the  functions 
required  to  produce all of the  cells of the  product 
framework,  extended  to include the  processes  re- 
quired to manage the  enterprise  resources. In this 
fashion, Cell B2 is a  metamodel  (or  process 
model) of the  product  framework plus some  ex- 
tensions. 

Cell C2 of the  enterprise  framework (owner’s 
row,  network  column) is a model of the  locations 
required to produce all of the  cells of the  product 
framework,  extended to include those  locations 
required  for managing the  enterprise  resources. 
In this fashion, the  cells of Row 2 (owner’s row) 
of the  enterprise  framework are metamodels of 
the  product  framework  extended as required to 
manage the  enterprise  resources. 

By the same  token, the Row 2 (owner’s row)  mod- 
els of the I/S framework are  the  metamodels of the 
enterprise  framework, with extensions  required 
to manage the I/S resources. 

Similarly, the CASE tool manufacturer  framework 
Row 2 (owner’s row) cells are  the  metamodels of 
the ISA framework, with extensions  required  to 
manage the CASE manufacturer’s  resources. 

The CASE tool manufacturer’s  framework  has 
some  interesting  peculiarities in that it looks very 
similar to  the I/S organization  framework. The 
reason  is  the  products of both of these  organiza- 
tions  are  applications.  The  only difference is that 
the CASE tool products  are  applications  for build- 
ing applications,  whereas  the 11s organization 
products  are  applications for building (enterprise) 
products. Although these  frameworks  may  be 
quite  the  same generically, the  instances of the 
cell models may differ substantially  because  the 
two  organizations  are likely to have  dramatically 
different strategies, methodologies, geography, 
etc., which would mean  the  structure of the  mod- 
els would depart  dramatically.  Figure 9 shows  the 
metarelationships  between  the  frameworks. 
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There is another dimension to  the recursiveness 
of the framework logic in that in any given en- 
terprise,  there may be as-is  versions  and  to-be 
versions of each of the cell models. Therefore,  the 
total  set of frameworks  that may be of interest 
(and  therefore  may  require managing) might be 
depicted as in Figure 10. 

Still another dimension of recursiveness  is  pos- 
sible  and  is being considered as part of the con- 
ceptual  schema  for  the IRDS. It is the possibility 
of applying the logic of the  framework to  the 
framework itself. That is, any given cell is  a com- 
plex engineering product in its  own right. It  has  an 
owner, designer, builder, material,  function,  and 
geometry.  Therefore, the framework logic could 
be applied to  each of the  cells of the framework 
to analyze  the design and  construction  issues  that 
affect that cell. 

Although these  three dimensions of recursiveness 
(related  frameworks,  framework  versions,  and 
nesting frameworks)  expose  the  considerable 
complexity of the architecture  issue,  the  fact  that 
the simple logic of the  framework  can  be  em- 
ployed recursively opens up  the possibility of: 

Leveraging the reusability of the logic to  ad- 
vance  the  state of the  art  and  extend  the  body 
of knowledge 
Technically managing the  relationships  be- 
tween all of the  models (for the  purposes of 
configuration management and change assimi- 
lation) through  such  techniques as versioning 

Since  the  storage  mechanism  (repository) could 
not in  itself differentiate between  one  framework 
and  another,  the  same  repository  could  be used 
for managing all of the  frameworks  merely  as  ver- 
sions.  This  factor brings architecture manage- 
ment into  the realm of feasibility. For this  reason 
it is imperative to begin to acquire  the  capabilities 
for producing and managing architectures.  It is 
only  a  matter of time before  the  technology will 
allow managing enterprise  change  beyond  the 
limits of our  current imagination. 

Before employing the  rules of the  framework  for 
defining the  other  three  columns  (who,  when,  and 
why), it is necessary  to  state  the  caveat  once 
again. That  is,  there  is  not  a lot of precedent in the 
data  processing  community for cells in the col- 
umns  that  represent  these  other  three  abstrac- 
tions.  Examples  are  abundant  for  the  process  and 
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Figure 9 Set of interesting metaframeworks 
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Figure 11 An entity-relationship diagram 

data  columns.  Fewer  are available in the  network 
column. But  there is a  scarcity of good examples 
in the people, time, and  motivation  columns. 
Therefore, any definition of cells in these  other 
three  columns  must  necessarily  be  more hypo- 
thetical  and  less empirical. The rules of the  frame- 
work  must be adhered  to in order  to  preserve  the 
conceptual integrity of the classification scheme. 

It is also  important to note  that  examples of the 
cells in the  last  three  columns  have  been  devel- 
oped in other disciplines, including some  research 
areas in computer  science. A great deal of thought 
has  been  devoted  to  these  issues in psychology, 
sociology, industrial engineering, organizational 
dynamics, artificial intelligence, real-time sys- 
tems, game theory,  distributed  systems,  business 
administration,  and  other fields. These fields have 
a rich supply of knowledge yet  to  be tapped  and 
mapped into  the  framework in a  form  that  can  be 
used by  the  data  processing  profession.  There- 
fore,  even  though  the  basic  concepts defined by 
the  framework  rules  are likely to  be  stable  over 
time as a classification system,  the specific names 
and  examples  are likely to  change as more is 
learned  and as  other disciplines can  be  surveyed 
for  appropriate  contributions. 

Overview of conceptual graphs 

Conceptual  graphs  are  a  system of logic that  can 
be used in conjunction with other  graphic  nota- 
tions,  such as entity-relationship diagrams. '' Un- 
like E-R diagrams, however,  conceptual  graphs 
are  as general as predicate  calculus and can  ex- 
press all  of the  relationships  and  constraints  that 
affect an  enterprise and its information system. 
To illustrate  the  issues,  consider  the ON relation 
for cats  on mats, as  expressed in three different 
modeling languages: E-R diagrams, symbolic 
logic, and  conceptual  graphs.  Figure 11 shows  an 
E-R diagram for  the  entity  type CAT linked by  the 
ON relation to  the entity  type MAT. 
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The  pairs of numbers on  the  arcs of Figure 11 are 
calledparticipation  counts. They  show  the lower 
and  upper  bounds  on  the  number of instances of 
each  entity  type  that  may  be  associated with en- 
tities of the  other  type.  The pair 0:l  on  the left 
shows  that  zero  or  one  cat is on  each  mat,  and  the 
pair 1:l on  the right shows  that  one  and  only  one 
mat is associated  with  each  cat.  Together,  they 
imply that  every  cat is on  a  unique mat but  that 
some  mats may not  have  any  cats. In symbolic 
logic, that  same information may  be  stated in the 
basic  notation for first-order predicate calculus: 

W X ) ( ~ Y ) ( C ~ ~ ( X )  2 (maW A on(x,y) 
A (Vz)((mat(z) A on(x,z)) 3 z=y) 
A Ww)((cat(w) A on(w,y)) 3 w=x)). 

The first line of this formula says  that  every  cat is 
on  a mat: literally, it may be  read For every x, 
there exists a y ,  where ifx is a cat, then y is a mat 
and x is on y .  The  second line says that  there is 
only  one mat for  each cat: For every z, i f z  is a mat 
andx is on z, then z is identical t oy .  The third line 
says  that  there is only one  cat  on  each mat: For 
every w, if w is a cat and w is on y ,  then w is 
identical to x .  The  complexity  and  unreadability 
of formulas like these  is  the main reason  why  da- 
tabase  designers and systems  analysts  do  not like 
to  use  predicate  calculus. 

The  need for an  extended  notation to simplify 
such  formulas was recognized as early as 1910. In 
the Principia Mathernatica, Whitehead and Rus- 
sell13  introduced  the relational operators E! for 
exactly one and E!! for  uniqueness. For  the  op- 
erator E!, there is a  corresponding quantifier 
(3!x), which  means  that  there  exists  exactly  one 
x. Uniqueness is more  complex,  since it must  be 
expressed by a pair of quantifiers; the  operator 
E!! corresponds  to  the quantifiers (Vx)(El!!y), 
which mean  that  for  every x there  exists  a unique 
y. With such quantifiers, the  second  and third 
lines of the  preceding formula can  be eliminated: 

Wx)(3!!y)(cat(x) 3 (mat(y) A on(x,y)). 

This formula may  be  read For everyx, there exists 
a uniquey, where ifx is a cat, then y is a mat and 
x is on y .  In 1938, the logician Arnold Schmidt 
introducedsorted logic with sort  or  type labels for 
each  variable. l4 Such  a  notation simplifies the  for- 
mula further: 
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(Vx:cat)(3!!y:mat)on(x,y). 

This formula may  be  read For every cat x, there 
exists a unique mat y, where x is on y .  The  var- 
iables x and y are the main features  that make this 
formula sound  unnatural in comparison  to  En- 
glish. A graph  notation  can  reduce or eliminate 
the need for  variables by showing connections 
directly. 

Conceptual  graphs  are  a  system of logic designed 
to  map to and from natural languages in as simple 
and  direct  a  manner as possible. They  are  based 
on  the  existential  graphs by  the logician Charles 
Sanders Peirce,15 the  dependency  grammars by 
the linguist Lucien  Tesnikre, l6 and the  semantic 
networks  that  are widely used in artificial intelli- 
gence. l7 They combine extended quantifiers and 
type labels in a  readable  graphic  notation.  They 
have  been used and implemented by  research and 
development  groups  around  the  world. And they 
have  been  the  subject of seven annual workshops 
from 1986 to 1992. For  these  reasons,  the ANSI 
Task  Group X3H4.6 has  chosen  them  as  the  basis 
for the  normative language of the IRDS conceptual 
schema.  Figure 12 shows  the  conceptual  graph for 
the  sentence Every cat is on a unique mat. 

The  boxes in a  conceptual graph represent con- 
cepts, and the  circles  represent conceptual rela- 
tions. CAT and MAT are type labels that  corre- 
spond  to  the  sort  or  type  labels in sorted logic, and 
V and  @unique  are quantifiers that  correspond  to 
V and 3!! in predicate calculus. The graph nota- 
tion eliminates the  variables x and y by using arcs 
that link the  concepts and relations  directly. 
When conceptual  graphs  are mapped to  predicate 
calculus,  variables  are assigned to  the concept 
nodes.  The  arrow pointing toward  the circle 
shows  the first argument of the  relation, and the 
arrow pointing away  shows  the  second argument 
(relations  with more than  two  arguments  have 
numbers  on  the  arcs). 

To  save  space  on the printed page, Figure  12 can 
also be written in a linear notation  that  uses 
square  brackets  for  the  concepts  and  rounded pa- 
rentheses  for  the circles: 

[CAT: V+(ON)+[MAT: @unique]. 

The linear form can  also  be  written with only  the 
ASCII character  set: 
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Figure 12 A conceptual graph 

[CAT: @every]->(ON)->[MAT: @unique]. 

The  graphic form is usually the most readable,  but 
the linear form takes  less  space  on  the printed 
page, and the ASCII form is convenient for inter- 
change  between  systems. 

Putting quantifiers in the  boxes with the  type la- 
bels allows a  more  direct mapping to English than 
the participation counts in E-R diagrams. The 
concept [CAT: V] represents  the English phrase 
every cat, and [MAT: @unique] represents  a unique 
mat. They also allow a  direct mapping to  the 
quantifiers in sorted  predicate calculus: (Vx:cat) 
and (3!!y:mat).  The pair of participation counts 
0:l and 1:l correspond to  the quantifier @unique, 
but  other  combinations  do not have  such  a simple 
correspondence. To  express participation counts 
such as 2:7 and 5:15, two  conceptual  graphs 
would be  needed: 

[CAT: V+(ON)+[MAT: {*}@5:15]. 
[CAT: {*}@2:7]+(ON)+[MAT: VI. 

The first graph may be  read Every cat is on 5 to 
15 mats; and  the  second may be  read 2 to 7 cats 
are on every mat. The symbol {*} is the generic 
plural marker, which represents  a  set of unspec- 
ified elements  whose  type is determined  by  the 
type label of the  concept.  The quantifier @5:15 
indicates  that  the  count or cardinality of the  set 
ranges from 5 to 15. Getting  the cats  to sit still long 
enough for such  a  situation  to  be  set  up may be  a 
challenge, but if it can  be  done,  conceptual  graphs 
can  describe it. Furthermore,  the  description  can 
be mapped to English in a  readable  way. 

E-R diagrams are primarily used as a  metalan- 
guage for talking about  database designs. They 
cannot be used to  represent  actual  instances of 
data in the  database.  Conceptual  graphs, how- 
ever,  can  express  statements  about  instances in 
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Figure 13 A conceptual  graph  with  instances 

CAT: Yojo MAT: #15738 

Figure 14 Two graphs  for  showing a cat  chasing  a 
mouse 

the  database  as well as quantified statements  that 
represent  E-R diagrams. Figure 13, for  example, 
represents  the  statement The cat Yojo is on the 
mat #15738. In  each  concept  box,  the  colon  sep- 
arates  the type field on  the left from the referent 
field on the right. The  referent field may  contain 
quantifiers like V and  @unique,  plurals like 
(*}@5:15, proper  names like Yojo, serial  numbers 
like #15738, or even  variables like *x or *y.  The 
pure  graph  notation  does  not  require  variables, 
but  the linear form needs  them  to  show  cross ref- 
erences.  The  referent field may also be blank: the 
concept [CAT] means  that  there  exists  a  cat,  but  its 
identity  is  not known. 

Since  conceptual  graphs are designed to repre- 
sent  the  semantics of natural languages, the  basic 
conceptual  relations  are  derived from the case 
relations or thematic roles of linguistic theory. 
Examples of those  relations include AGNT for  the 
agent of an  action, PTNT for  the patient or thing 
acted  upon, RCPT for  the recipient, and INST for 
the instrument or means by which  an  action is 
performed.  Case  relations would be familiar to a 
speaker of ancient  Latin or modern Russian, but 
not to most English speakers. A linguist who is 
designing a  natural language system  to  map  En- 
glish into  conceptual  graphs would have  to know 
the  case  relations.  But  even  without linguistic 
training, a  database  designer  or  systems  analyst 
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could use  conceptual  graphs  with no more lin- 
guistic detail than  E-R diagrams. 

Figure 14 shows  two  conceptual  graphs  that il- 
lustrate  two different levels of detail. Both  graphs 
represent  the  sentence A cat is chasing a mouse. 
The first graph  represents  the  verb chase by  the 
concept [CHASE]. It  uses linguistic relations  to 
show  that  the  cat is the agent and  the  mouse  is  the 
patient.  The  second  graph  uses  the  relation 
CHASING to link the  concepts of the  cat  and  mouse 
directly. 

Both conceptual  graphs in Figure 14 are equally 
valid,  but  they  are optimized for different pur- 
poses. The first graph with the  relations AGNT and 
PTNT is more  appropriate for mapping conceptual 
graphs to English and other  natural languages. 
The  second is more  appropriate  for  a  database 
design where  the linguistic details  are  not  rele- 
vant.  To  show how the two graphs are related, the 
following definition relates  the high-level relation 
CHASING to  the concept  type CHASE and  the low- 
er-level  relations AGNT and PTNT: 

relation CHASING(x,y) is 
[ANIMATE: *x]+(AGNT)+[CHASE]- 

(PTNT)-+[MOBlLE-ENTITY: *y]. 

This definition says  that  the relation CHASING re- 
lates  an  animate being x to  a mobile entity y, 
where x is the agent of CHASE and  y is the  patient. 
The  type labels ANIMATE and MOBILE-ENTITY 
specify  the  most  general  types  that could do  the 
chasing or  be  chased.  They would include a  boy 
chasing a  kite or a dog chasing  a  truck.  By  ex- 
panding the definition of CHASING, the  second 
graph in Figure 14 could  be  converted to  the first; 
by contracting  the definition, the first graph could 
be  converted  to  the  second. A top-down design 
could start with high-level relations  such as CHAS- 
ING and  later define them in terms of the  more 
primitive ones. The definitional mechanisms  pro- 
vide  a way  to  restructure  the  description in dif- 
ferent sets of primitives. l8 

Besides  concepts  for  entities  and  actions,  the full 
ISA framework  requires  concepts  and  relations 
for showing times  and  purposes. In Figure 15, the 
graph  for  a  cat  chasing  a  mouse  is  nested inside a 
concept of type SITUATION. The inner context 
with the  nested  graph  describes  the  situation, and 
the outer context contains  concepts and relations 
that say how the  situation  relates  to  external 
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times,  places, people, and things. The relation 
DUR for duration shows  that  the  situation  lasted 
for  a time period of 13 seconds.  The  relations 
FROM and TO show  that  the time period started  at 
the time 19:29:32 Greenwich Mean Time (GMT) 
and  ended  at 19:29:45 GMT. 

Flowcharts  and  Petri  nets  are  often used to de- 
scribe  processes in Column B of the ISA frame- 
work.  Such diagrams can  also  be  represented in 
conceptual  graphs by using nested  graphs linked 
by  the succ or  successor relation. Figure 16 
shows  a  concept of type PROCESS, which contains 
a  nested  state sl, followed by an  event  e, followed 
by another  state s2. The  state sl  has  a  duration of 
15 seconds,  the  event  e  occurs  at apoint in time 
(PTIM) of 20:23:19 GMT, and the  state s2 has  a 
duration of 5 seconds. 

Conceptual  graphs  are  a  system of logic that  re- 
mains  readable at many different levels of detail. 
Predicate  calculus, by  contrast, is not very read- 
able  at any level of detail. The formula operator 
43,4 would translate  Figure 16 to  the following: 

(3p)(process(p) A descr(p, 
(3~1)(3e)(3~2)(3tl)(3t2) 

(state(s1) A event(e) A state(s2) A 
succ(s1 ,e) A succ(e,s2) A 
time-period(t1) A time-period(t2) A 
time(20:23:19 GMT) A 
dur(s1 ,tl) A ptim(e,10:23:19 GMT) A 
dur(s2,tZ) A 
rneasure(tl,15sec) A measure(t2,5sec)))). 

The  unreadability of such formulas has given 
logic a bad reputation among practicing program- 
mers.  Yet  that is not  the fault of logic, but of the 
predicate  calculus  notation.  Conceptual  graphs 
are  just  as formal and precise,  but  they  are  a  read- 
able notation  for  representing  any level of the ISA 
framework:  enterprise  models, information sys- 
tem models, technology models, or component 
models. Furthermore,  they  can  be  translated di- 
rectly  into English or  other natural languages. 
Figure 16, for example, could be  read as the fol- 
lowing sentence in structured English: There is a 
process  p consisting of a  state sl of duration 15 
seconds, followed by an event  e at time 20:23:19 
GMT, followed by a  state s2 of duration 5 seconds. 
Such English may not be elegant, but it would be 
useful for comments  and help facilities. The pos- 
sibility of generating it automatically from  the for- 
mal description would ensure  that  the implemen- 

IBM  SYSTEMS  JOURNAL,  VOL 31, NO 3, 1992 

Figure 15 Showing  the  duration of a  cat  chasing  a 
mouse 

+ 

1 

1 TIME:  19:29:32 GMT I I TIME: 19:29:45 GMT I 

Figure 16 A process  described  by a conceptual  graph 

PROCESS: 

1 
EVENT: *e TIME:  20:23:19 GMT 

I 

STATE:*& TIME-PERIOD: @ 5  SEC 

tation  and  the  documentation would always 
agree. 

Although conceptual  graphs  are  general enough 
to  represent  every cell of the ISA framework, it is 
not  necessary  to  replace  the older notations. E-R 
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Figure 17 Representing  four  cells  of  the ISA framework 

ENTERPRISE: 

WHAT?  HOW? 

ENTERPRISE: 

INFORMATION SYSTEM: DATA: { =3?-]- 

diagrams are  adequate  to  represent  a  subset of 
logic, and  they  can  be formally translated  into 
conceptual  graphs.  Any design that  has  been  rep- 
resented in E-R diagrams, data flow diagrams, or 
even  flowcharts  need  not  be  rewritten.  Instead, it 
can  be mapped into  conceptual  graphs  without 
change. Systems  analysts  who  are familiar with 
the older technology  need  not  change  their  ways 
of thinking until they feel the need to  do so. The 
ANSI IRDS X3H4.6 Task  Group  has  established 
some guidelines for migrating from one  version of 
the IRDS standards  to  another.' 

Any  conceptual  schema  represented in the  cur- 
rent ANSI standards  must  be migratable to  the 
new standards  without manual intervention. 
Design tools  based on the  current  standards 
may  continue to  be used indefinitely, and new 
tools should be upward  compatible with them. 
Logic  is  general  enough to  represent  any de- 
sign; conceptual  graphs are a  readable  graphic 
notation for all of logic, but no systems  analyst 
should be forced to use  the  new  notations  for 
any  task  for  which  the old notations  are  ade- 
quate. 

Conversions  from  one  system  to  another  rarely 
happen  overnight,  and new systems  must  be able 
to coexist with the old. 

Representing the ISA framework in 
conceptual graphs 
Conceptual  graphs  can  describe the  content of 
any cell in the ISA framework. Even  more impor- 
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tantly,  they  can  describe  the  relationships  be- 
tween cells. All of the information in one cell of 
the ISA framework  can  be placed in a single con- 
cept  box.  That  concept would be  a  context  that 
contained  a  set of graphs  representing  the  con- 
tents of the cell. Figure 17 shows four concepts, 
each of which  contains  a  set of graphs  that  rep- 
resent  one of the ISA cells. These  four  concepts 
represent  the cells of Columns  A  and B, Rows 2 
and 3. The NAME relation  shows  that  the  entities 
in  Row 2, the  enterprise  row,  are named by  data 
in Row 3, the information system row. The MODL 
relation shows  that  the  processes in  Row 2 are 
modeled by functions in Row 3. The PTNT relation 
shows  that  the  processes in Column B operate on 
the  entities  (the  patients) in Column B. And the 
ARG relation shows  that  the  functions in Column 
B take  their  arguments from the  data in Column 
A. 

At the  overview level of Figure 17, the  graphs 
inside the  boxes  are not readable.  But  with  an 
interactive display, it would be  possible  to  zoom 
in on any  box  to  examine its contents.  It would 
also  be possible to  zoom  out  and see all 30 cells 
of the framework  nested inside a larger concept 
box. At  an  even higher level, the  concept  box 
representing  version 1 of a  framework could be 
related to  the  box for  version 2 and  another box 
for a  version 3 that was still in the planning stage. 
Conceptual  graphs  can be used as  the language 
for describing each level as well as  the  metalan- 
guage for talking about how the different levels 
relate to  one another. 
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Figure 18 All columns have equal status 
~~ 

Rule 1. The columns have no order. Figure 1 
shows  the original ordering of the ISA framework. 
Figures 6 and 7 show  the additional three col- 
umns. But  the  particular  ordering is merely  a his- 
torical  accident. Figure 18 shows  the six columns 
in a hexagon, where  each  one is related  to  every 
other.  The traditional tabular  order is merely  a 
concession to paper or flat computer  displays. 
Graphs eliminate the  restrictions  and permit any- 
thing in any column to  be linked directly  to  any- 
thing in any  other column. 

Rule 2. Each  column has a simple, basic model. 
In terms of conceptual  graphs, this rule implies 
that  there is one  basic  concept  type for each  col- 
umn, which answers  the  question  word  at  the 
head of the column. All of the  graphs  that  de- 
scribe  any cell in that column assert  some infor- 
mation about  some  subtype of that  basic  type. 
Following are  the  basic  concept  types  as  depicted 
in Figure 18 for  each column: 

1. The  answer to the question what is some  type 
of entity. For Rows 1 and 2, the  entities  are 
real-world objects. For Row 3, they  are logical 
information types in the 11s model. For Row 4, 
they  are physical data  types in the technology 
model. For Row 5 ,  they  are  more specialized 
data  types for each  component. 

2. The  answer  to  the  question how is some  type 
ofprocess. For  Rows 1 and 2, they  are real- 
world processes. For  the lower rows,  they  are 
computational  functions  that model the  pro- 
cesses. 

3. The  answer to  the question where is some  type 
of location. For  the  top  two  rows,  they  are 
locations in the world. For  the lower rows, 
they  are logical or physical nodes in a com- 
puter  network. 

4. The  answer  to  the  question who is some  type 
of role played by a  person or a  computational 
agent. For Rows 1 and 2, they  are  persons  who 
play  some role in the  enterprise. For the lower 
rows,  they may be  programs  that  act for the 
user at the higher level. 

5. The  answer to  the question when is time, a 
subtype  such as date, or a time that is coinci- 
dent  with  some  event. 

6. The  answer  to  the  question why is some goal 
or subgoal that  provides  the  reason  that mo- 
tivates  the model for that row. 

Each of these  basic  concept  types  is  related to 
other  concept  types by  various  relations.  Those 
other  types may be included in the  graphs  spec- 
ified  in that column, but  they  provide auxiliary 
information that is subordinate  to  the  basic  con- 
cept  type for the  column. 
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Figure 19 Representing  three rows in  Column A 

ENTERPRISE: 

INFORMATiON 
SYSTEM: 

ECHNQLOGY: 

MODEL: MUSTANG 

J 
1 

+ 4 

t t 
VARIABLE: SERNO VARIABLE: MODELID 

Rule 3. The basic model of each column  must be 
unique. Since  each column provides  the  answer 
to  a different question, no two columns  focus on 
exactly  the  same information. Since all columns 
are  related,  the  graphs in each column may  con- 
tain  concepts and cross references  to  other  col- 
umns. But the  central  concept  types in each  col- 
umn are unique. 

Rule 4. Each  row represents a distinct, unique 
perspective. Since  each  row  presents  a  perspec- 
tive on a different model from  the point of view of 
a different role (planner, owner, designer, builder, 
subcontractor), each row contains different con- 
cepts that provide a different level of description. 
Figure 19 shows three different rows in Column A. 

All the  concept  types in Figure 19 are  subtypes of 
entity: CAR, MODEL, SERIAL-NO, MODEL-NAME, 
and VARIABLE. The  types in Row 2, the  enterprise 
model,  describe real-world entities,  such as  cars 
and  models.  The  types in Row 3, the I/S model, 
describe logical information types,  such as serial 
numbers  and model names.  The  types in Row 4, 
the  technology model, describe implementation 
details,  such as  variables in some programming 
language. The NAME relation links the  entities in 
Row 2 to  the information types in Row 3. The 
REPR (representation) relation links the informa- 
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tion types in Row 3 to  the implementation types 
in Row 4. 

Rule 5. Each  cell is unique. This rule follows from 
Rules 3 and 4. 

Rule 6. The composite or integration of all  cell 
models in one  row constitutes a complete model 
from theperspective of that row. When a  system 
is completely specified, all the  conceptual  graphs 
in each cell of a given row  represent  a  complete 
specification of the  system at that level. To  see 
the kind of information at  each level, read  across 
the  rows of the OCRA example in Figure 7. 

Rule 7. The logic is recursive. The ISA framework 
is recursive in several different ways. In one 
sense, it can  serve  as  a  metamodel  to  describe 
itself  since it is general enough to describe  the 
construction of any  system, it can also describe its 
own construction. As another kind of recursive- 
ness, it can describe entities and states that have 
parts and subparts nested inside one another to  any 
depth. Figure 16, for example, might represent the 
process of blowing out the candles on a birthday 
cake. The  state sl  would represent the candles 
burning for 15 seconds while the guests sing “Hap- 
py Birthday.” Then event e is the act of blowing out 
the candles, and state s2 represents the candles 
smoking for 5 seconds. Figure 20 is an expansion of 

IBM SYSTEMS  JOURNAL,  VOL 31, NO 3, 1992 



Figure 20 Expanded  description of state s i  in  Figure 16 

STATE: 

* s1 

SONG: HAPPY BIRTHDAY 

state sl to  show  the  nested  graphs  that  describe 
the  candles burning and  the  guests singing. 

In  Figure 20, the  details of the singing are  not 
described.  Even though singing is a  process with 
sound and movement,  those  details  are unimpor- 
tant at this level of description,  and  the  entire 
process  may  be  considered  a single, unchanging 
state. If the  details of the singing were significant, 
the  box of type SING could be expanded  to  a  pro- 
cess with each  note  represented as a  separate 
event. On a  sheet of paper, it is not possible to 
show all of the  nested  levels with equal  clarity, 
but an interactive display would allow the  viewer 
to zoom in or  out  on  any box. 

At  a larger level, Figure 21 shows  the  entire  birth- 
day  party  with  the  process box of Figure 16 nested 
inside. In the box for the birthday party, the  top 
graph says that 40 guests x are giving presents to a 
person named Marvin. There  are also 50 candles y 
on a cake. Inside the nested process box, the first 
state is described by graphs for the candles y burn- 
ing  and the guests singing “Happy Birthday. ” The 
next event is described by a graph for Marvin  blow- 
ing out  the candles y. And the last state is described 
by  a graph for the candles generating smoke. 

The  example of a  birthday  party  illustrates  the 
conceptual  graph  notation with a familiar situa- 
tion. But exactly  the  same  techniques could be 
used to describe  a manufacturing process,  a 
courtroom trial, or  the  steps in the  execution of a 
computer  program. For  any of these purposes, 
the  subtypes of SITUATION could be  described by 
nests of contexts containing conceptual  graphs. 
Other  notations for describing processes  and 
events-flowcharts, state-transition diagrams, 
data flow diagrams, or Petri nets-could be  trans- 
lated to similar nests of conceptual  graphs. 
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An architecture for the information age 

Dramatic  improvements in the price-performance 
of information technology and the  escalation of 
the  rate of change  show  no signs of abatement.  In 
the  words of Alvin Toffler, “Knowledge is 
change . . . , and accelerating knowledge, fueling 
the  great engine of technology, means  accelerat- 
ing change.””  Gone  are  the  days of computers 
for simple calculations. We are  only now begin- 
ning to see the  enormous  complexity of integrat- 
ing information technology into  the very fabric of 
our  enterprises.  Soon,  the  enterprise of the infor- 
mation age will  find  itself immobilized if it does 
not  have  the ability to  tap  the information re- 
sources within and  without its boundaries. 

In  this  scenario, it is little wonder  that  a  frame- 
work for information systems  architecture finds 
such  widespread applicability. It would be im- 
possible for man or machine to successfully  ac- 
commodate  the  complexities of today’s  enter- 
prise without  some kind of logic structure.  Every 
discipline apparently finds a classification scheme 
or  periodic  table  for organizing knowledge and 
forming a  basis for constructing  more  complex 
theses.  The ISA framework is a  contribution in 
this  regard.  It is not so much  an invention as it is 
an observation-an observation of some  (appar- 
ently)  natural  rules for segmenting an enterprise 
into  understandable  parts  without losing the def- 
inition of its  total integration. 

The logic structure  or  rules of the  framework  are 
generic. They  can  be  used for structuring  the  de- 
scription of any  complex  object. The framework 
was first discovered by observing how the man- 
ufacturing discipline segments  the  descriptions of 
complex engineering products  for  the  purposes of 
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Figure 21 Nested  contexts  for describing a  birthday  party 

BIRTHDAY PARTY: 

CANDLE: (*)@50 *y  

PROCESS: 

STATE: 

TIME PERIOD: @ 15 SEC 

SONG: HAPPY BIRTHDAY 

EVENT: 

PERSON:  MARVIN TIME: 20:23:19 GMT 

TIME PERIOD: @ 5 SEC 

design and  manufacture. It would  appear  that the Establishing a baseline of descriptive  represen- 
use of the design artifacts  are  several including: tations  for managing changes in the  product 

Partitioning the design tradeoff decisions  into 
manageable, independent  variables These  are  precisely  the  same  reasons  why  the ISA 
Ascribing appropriate design formalisms for framework  is  interesting for segmenting the  de- 
each  variable scriptions of the  enterprise: for separating  inde- 

during and after  its  production 
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pendent  variables  into  understandable, design- 
able  components;  for developing appropriate 
design formalisms; and  for establishing an  enter- 
prise  infrastructure in which change  can  be  as- 
similated in a manageable fashion. 

Until recently,  these  architecture  and modeling 
concepts  were  somewhat  theoretical  and  merely 
intellectually  entertaining  to  the practicing data 
processing  professional. Modeling formalisms 
had evolved  and  were maturing, but  the  resultant 
models  were of minimal value  since  they  tended 
to  be of such  a high level of generality  that  they 
were  useless  for design purposes,  or at such  a low 
level of detail  that  they could communicate  to  no 
one but the person  who built them. Furthermore, 
there  was  nowhere  to  put  them  except  on  paper, 
or  on large walls. That  made it virtually impos- 
sible to locate  a given design component,  search 
for  patterns,  change  the  structure,  or  keep it cur- 
rent,  much  less perform configuration manage- 
ment and version  control  or zoom in and  out  for 
communicating to different audiences. 

It is only  the  advent of an automated  model  stor- 
age facility or repository  that brings any of this 
into  the realm of feasibility and  makes  architec- 
ture  a reality. It  does  not  mean  to suggest that all 
of these  ideas will be immediately available in any 
particular  repository  product.  It  only  means  that 
they  come  into  the realm of feasibility as repos- 
itory  technology  becomes  a reality. Even though 
early  repository-type  products  are  nowhere near 
ready  to  perform  the  kinds of services  mentioned, 
the  very existence of an  automated  storage  mech- 
anism for models  makes it clear  that  architecture 
is no longer mere intellectual entertainment. It 
will become  an  imperative for any  enterprise  that 
intends  to  be  a  serious  player in the information 
age. 
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