
Extending
and formalizing
the framework
for information systems
architecture

by J. F. Sowa
J. A. Zachman

John Zachman introduced a framework for
information systems architecture (SA) that has
been widely adopted by systems analysts and
database designers. It provides a taxonomy for
relating the concepts that describe the real world
to the concepts that describe an information
system and its implementation. The ISA
framework has a simple elegance that makes it
easy to remember, yet it draws attention to
fundamental distinctions that are often
overlooked in systems design. This paper
presents the framework and its recent extensions
and shows how it can be formalized in the
notation of conceptual graphs.

T he world contains entities, processes, loca-
tions, people, times, and purposes. Com-

puter systems are filled with bits, bytes, numbers,
and the programs that manipulate them. If the
computer is to do anything useful, the concrete
things in the world must be related to the abstract
bits in the computer. Zachman’s framework for
information systems architecture (ISA) makes that
link. It provides a systematic taxonomy of con-
cepts for relating things in the world to the rep-
resentations in the computer. It is not a replace-
ment for other programming tools, techniques, or
methodologies. Instead, it provides a way of
viewing a system from many different perspec-
tives and showing how they are all related.’

Most programming tools and techniques focus on
one aspect or a few related aspects of a system.
The details of the aspect they select are shown in
utmost clarity, but other details may be obscured
or forgotten. As examples, consider each of the
following techniques:

Flowcharts, which were introduced by John
von Neumann in 1945, are the oldest and still
most widely used programming aid. They focus
on the operations performed by a computer and
their temporal sequence. They are fine for
showing algorithms, but the data structures pro-
cessed by the algorithms are only mentioned
incidentally as they are being operated upon.
Entity-relationship diagrams are a popular
graphic notation for showing entity types, their
attributes, and the relations that connect them.
They are fine for showing certain kinds of con-
straints, but they cannot show all constraints,
and they ignore the operations performed by
and on the entities.
Relational databases emphasize tables and the
operations for manipulating them to derive an-

Wopyright 1992 by International Business Machines Corpo-
ration. Copying in printed form for private use is permitted
without payment of royalty provided that (1) each reproduc-
tion is done without alteration and (2) the Journal reference
and IBM copyright notice are included on the first page. The
title and abstract, but no other portions, of this paper may be
copied or distributed royalty free without further permission
by computer-based and other information-service systems.
Permission to republish any other portion of this paper must
be obtained from the Editor.

590 SOWA AND ZACHMAN IBM SYSTEMS JOURNAL, VOL 31, NO 3, 1992

swers to complex queries. They are excellent
for representing highly repetitive business data
that originate in forms and tables, but they are
less well-suited to the irregular data structures
that occur in graphics and engineering designs.
Object-oriented systems emphasize objects and
the operations that may be performed by and on
them. They are excellent for representing con-
straints and operations that apply to each object
and its parts, but current object-oriented data-
bases are not as good as relational systems for
handling complex queries.

Each of these techniques is specialized for a dif-
ferent purpose. By concentrating on one aspect,
each technique loses sight of the overall informa-
tion system and how it relates to the enterprise
and its surrounding environment. The purpose of
the ISA framework is to show how everything fits
together. It is a taxonomy with 30 boxes or cells
organized into six columns (labeled A through E)
and five rows (numbered 1 through 5) . Instead of
replacing other techniques, it shows how they fit
in the overall scheme. Flowcharts, for example,
may be suitable for describing the cell in Column
B, Row 5 (the process column, component row in
the framework); and entity-relationship (E-R) di-
agrams may be acceptable for Column A, Row 3
(the data column, system model row). But the ISA
framework shows how the cells in different col-
umns and rows relate to one another.

For any one of the 30 cells in the ISA framework,
it is possible to develop a special notation that is
ideally suited to the subject matter described in
that cell. But to relate all of the cells to one an-
other, there should be a common language that
can describe all of them and their interrelation-
ships. A natural language such as English is ca-
pable of describing everything in every cell. Yet
English, which may be good for discussing design
decisions in the early stages of system develop-
ment, is not as precise and implementable as the
more specialized notations. Symbolic logic is pre-
cise and general enough to describe anything that
can be implemented on a digital computer and
even the computer itself. But the usual predicate
calculus notation for logic tends to become un-
readable, even for simple examples. Conceptual
graphs are a readable graphic notation for logic
that is designed for translations to and from nat-
ural language^.^,^ They can describe anything in
any cell of the ISA framework, they have a for-
mally defined mapping to and from other forms of

IBM SYSTEMS JOURNAL, VOL 31. NO 3, 1992

logic, and they can coexist with the more spe-
cialized notations, including flowcharts, E-R di-
agrams, and object-oriented hierarchies.

Because of the generality and readability of con-
ceptual graphs, the American National Standards
Institute (ANSI) X3H4.6 Task Group is using them ’

as a basis for the normative language of the con-
ceptual schema for Information Resource Dictio-
nary Systems (IRDS).’ They invited John Sowa,
the designer of the conceptual graph system, to
participate in the development of the IRDS stan-
dards. They also invited John Zachman, the au-
thor of the ISA framework, to present his frame-
work and its recent extensions. In writing this
paper, the authors have applied conceptual
graphs to the description of the ISA framework
and its extensions.

Within IBM, the ANSI IRDS standards and Zach-
man’s ISA framework are especially important for
AD/Cycle*.6” The AD/Cycle perspectives of the
enterprise model, the information model, and the
technology model were influenced by the three
middle rows of the ISA framework. The current
information model is consistent with the 1988
ANSI IRDS standards, which are based on E-R di-
agrams. The ANSI IRDS committee must make fu-
ture standards upward compatible with the cur-
rent ones, but extensions beyond E-R diagrams
are needed to accommodate new developments,
especially in object-oriented systems. Concep-
tual graphs can provide those extensions in a form
that is compatible with the ISA framework.

Overview of the framework

When applied to an information system, the word
architecture is a metaphor that compares the con-
struction of a computer system to the construction
of a house. The ISA framework is an elaboration of
that metaphor. It compares the perspectives in de-
scribing an information system to the perspectives
produced by an architect in designing and con-
structing a building:

Scope-The first architectural sketch is a “bub-
ble chart,’’ which depicts in gross terms the
size, shape, spatial relationships, and basic pur-
pose of the final structure. In the ISA frame-
work, it corresponds to an executive summary
for a planner or investor who wants an estimate
of the scope of the system, what it would cost,
and how it would perform.

SOWA AND ZACHMAN 591

Table 1 Characteristics of framework rows

Enterprise or business model-Next are the ar-
chitect’s drawings that depict the final building
from the perspective of the owner, who will
have to live with it in the daily routines of bus-
iness. They correspond to the enterprise (bus-
iness) model, which constitutes the design of
the business and shows the business entities
and processes and how they interact.
System model-The architect’s plans are the
translation of the drawings into detailed speci-
fications from the designer’s perspective. They
correspond to the system model designed by a
systems analyst who must determine the data
elements and functions that represent business
entities and processes. *
Technology model-The contractor must re-
draw the architect’s plans to represent the
builder’s perspective, which must consider the
constraints of tools, technology, and materials.
The builder’s plans correspond to the technol-
ogy model, which must adapt the information
system model to the details of the programming
languages, I/O devices, or other technology.
Components-Subcontractors work from shop
plans that specify the details of parts or sub-
sections. These correspond to the detailed
specifications that are given to programmers
who code individual modules without being
concerned with the overall context or structure
of the system.

These five descriptions correspond to the five
rows of the ISA framework. Figure 1 shows the
original version of the framework in which three
columns describe the data, function, and network
at each of the five levels. Inside the 15 cells are
examples of notations used to describe the corre-
sponding perspectives on an information system.

The three columns in Figure 1 represent the data,
function, and network of an information system.
For each of the five rows, Column A shows what
entities are involved, Column B shows the func-

592 SOWA AND ZACHMAN

tions performed, and Column C shows the loca-
tions and interconnections. For physical pro-
cesses in architecture and engineering, Column A
represents the material, Column B the function,
and Column C the geometry. Each row represents
a different role or perspective, a different set of
constraints, and therefore different model struc-
tures. Table 1 shows the perspectives, con-
straints, and models for the first three columns
that were described in Zachman’s original frame-
work. ’
The constraints are additive; that is, the con-
straints of a lower row are added to the model of
a higher row to produce a new model at a new
perspective. Ideally, the new model should not be
so dissimilar that the higher-row model cannot be
inferred (or reverse engineered) from the new
lower-row model. This is the challenge of quality
management: to ensure that as the model trans-
formations take place (that is, as each model is
structurally changed through the successive ap-
plication of additional constraints) the original
purpose of the business is not so obscured that the
business requirements are not recognizable in the
end product.

In practice, a constraint in a lower row might be
inconsistent with the model in the next higher
row. Then the designers who are responsible for
the two rows must initiate a dialog to determine
what must be changed and to ensure that no gap
in expectations exists between the different per-
spectives. No matter how desirable or aestheti-
cally attractive a particular feature might be, if it
violates the laws of physics, it cannot be imple-
mented. Therefore, the designers must notify the
owner and explicitly negotiate an alternative.

The columns of the framework represent different
abstractions from or different ways to describe
the real world. The reason for isolating one vari-
able (abstraction) while suppressing all others is
to contain the complexity of the design problem.

IBM SYSTEMS JOURNAL, VOL 31, NO 3, 1992

Figure 1 The original ISA framework

DATA
0 ENTITY
0 RELN

FUNCTION
0 FUNCTION
0 ARG

NETWORK
0 NODE
0 LINK

SCOPE

PLANNER

LIST OF THINGS IMPORTANT
TO THE BUSINESS r- ""ll""lll..ll" .ll..llxl",.

" l lx .xl l ." ,"" ,
lll..lll..x.,,"

lll""l...ll..

LIST OF PROCESSES THE
BUSINESS PERFORMS

LIST OF LOCATIONS IN
WHICH THE BUSINESS OPERATES

7 ENTITY = CLASS OF 0 NODE = MAJOR BUSINESS
LOCATION

0 FUNCTION = CLASS OF
BUSINESS PROCESS

E.G., "PROCESS FLOW DIAGRAM a
-1-
0

0 FUNCTION = BUSINESS PROCESS
0 ARG = BUSINESS RESOURCES

E.G., "DATA FLOW DIAGRAM
n

BUSINESS THING

ENTERPRISE
MODEL

OWNER

E.G., "ENT/REL DIAGRAM E.G., LOGISTICS NEWORK

0 e NODE = BUSINESS LOCATION

0 LINK = BUSINESS LINKAGE
=I ENTITY = BUSINESS ENTITY
7 RELN = BUSINESS CONSTRAINT

SYSTEM MODE1

DESIGNER

I.G., "DATA MODEL"

7 ENT = DATA ENTITY
7 RELN = DATA RELATIONSHIP

E.G., DISTRIBUTED SYSTEM
ARCHITECTURE

"
0 NODE = 11.5 FUNCTION

(PROCESSOR, STORAGE, ET(
0 LINK = LINE CHARACTERISTICS

0 FUNCTION = APPLICATION FUNCTION
0 ARG = USER VIEW

E.G., "STRUCTURE CHART" TECHNOLOGY
MODEL

BUILDER

i.G., DATA DESIGN

n n
E.G., SYSTEM ARCHITECTURE

rn

m uu
0 NODE = HARDWARE/SYSTEM

0 LINK = LINE SPECIFICATIONS
SOFTWARE

I.G.. NETWORK

7 ENT = SEGMENT/ROW
3 RELN = POINTEWKEY

0 FUNCTION = COMPUTER FUNCTION
;EEN/DEVICE FORMA1 0 ARG=S CR
-

ZOYWNENTS

SUB-
:ONTRACTOR

E.G., "PROGRAM

7 ENT = FIELD
13 RELN =ADDRESS

7 NODE =ADDRESS
7 LINK = PROTOCOL

7 FUNCTION = LANGUAGE STMT
7 ARG = CONTROL BLOCK

,G., DATA LO.. FUNCTION i.G., NETWORK :UNCTIONING
SYSTEM

IBM SYSTEMS JOURNAL, VOL 31, NO 3, 1992 SOWA AND ZACHMAN 593

Figure 2 Detailed cell metamodel

L(zJJ IDENTIFIER t_

9 DATA ARCHITECTURE

- "
SUBJECT AREA

I I l l
DATA ENTITY I RELATIONSHIP :E$Y

r(CONSISTS 'n OF

DOMAIN ATTRIBUTE IDENTIFIER

3 DATA DESIGN

SYSTEM
RULE I 7

MECHANISM

rl 11
KEY ELEMENT

594 SOWA AND ZACHMAN

For example, it is complicated enough to design
the process-to-process relationships of an enter-
prise without attempting to address the entity-to-
entity and location-to-location design issues at
the same time. However, since the processes, en-
tities, and locations are all abstractions of the
same enterprise, each is related to all of the oth-
ers. Therefore, during the design of any one, the
structural integrity of the others could undoubt-
edly be impacted. The challenge here is to design
each while understanding the impact on the in-
tegrity of all others to avoid being surprised by
undesirable side effects appearing long after it is
possible to contain them. The evidence of this
wisdom (or lack thereof) is seen in the majority of
applications portfolios of today. For 50 years,
we unknowingly optimized the function at the
expense of the data, and only now are we begin-
ning to discover the considerable, negative side
effects.

Although the original framework suggested mod-
eling constraints in each of the 15 cells, it did not
include a formal specification language that would
be suitable for detailed system design or for pop-
ulating a repository for AD/Cycle or other com-
puter-aided software engineering (CASE) tools.
E-R diagrams are one specification language that
has been used to describe the ISA framework and
thereby constitute the basis for a repository
model which could, in turn, store the enterprise
models. As an example, Figure 2 represents an
E-R style of definition for several of the frame-
work cells.

When the framework was first defined,' it was
fairly easy to find examples of all of the cells in the
data and process columns. Creative work was
even done in the network column when the con-
cepts of distributed processing were first popu-
larized. However, this work was not widely
adopted by the practitioners in the data process-
ing community. The advent of workstation tech-
nology, client-server concepts, and distributed
systems is once again focusing attention on the
network issues, and it is likely that formalisms
will begin to proliferate as remote processing and
storage become a reality. In any case, examples
of many of the cells of the original three-column
framework were available either in the practicing
or theoretical communities to empirically validate
the framework cells as they were originally de-
scribed.

SOWA AND ZACHMAN 595

Figure 3 Sample organization graphic

HIERARCHIES
[CONTROL

WORK) 4 I ‘
(COORDINATION

MARKETS

WORK)
. : ‘ V I

OPERATIONAL WORK

RESPONSIBILITY

The extended ISA framework

The three columns in Figure 1 correspond to the
three English question words what, how, and
where. For each of the five rows, Column A
shows what entities are involved, Column B
shows how they are processed, and Column C
shows where they are located. Since the original
ISA framework version was published in 1987, it
has been extended by considering the other three
question words in English: who, when, and why.
Each of these words directs attention to a differ-
ent focus on each of the five rows: who works
with the system, when events occur, and why
these activities are taking place. The six questions
for each of the five rows lead to 30 different per-
spectives on an information system.

Few formalisms, at least in the traditional data
processing community, are available for the who,
when, and why column cells. Some formalisms
exist in other disciplines, or even in some of the
very specialized (but less generally understood)
data processing circles. But their general unavail-
ability causes the new cell descriptions to be more
theoretical and less empirical. Therefore, it is im-
portant to understand and rigorously abide by the
rules of the framework while hypothesizing the
contents of the cells of the other three columns.
The lack of commonly accepted formalisms for
these columns also means that the terminology is
not based on long-established traditions. As the

596 SOWA AND ZACHMAN

state of the art advances, new insights will be
gained, and the terminology may become more
precise and standardized. Until then, the names
of the cell contents used in this paper should be
considered as suggestive, but not definitive.

The people (who) column. It is useful to abstract
the concept of people out of the real-world en-
terprise because of the significance of designing
the organizational infrastructure or the people-
to-people relationships of the enterprise. The or-
ganization design challenge has to do with the
allocation of work and the structure of authority
and responsibility. Therefore, the basic columnar
model is people-work-people, and the classic or-
ganization chart is a graphic depiction of the basic
model. See Figure 3.

The vertical dimension of the graphic represents
the delegation of authority, and the horizontal di-
mension represents the assignment of responsi-
bility. Classic organization charts do not usually
attempt to display the definition of the authority
work product or the functional (or responsibility)
work product. These work definitions, if they are
defined at all, are presented in text as supplemen-
tary documents. However, if it is assumed that
organizations and work design were perceived to
be important enough to ascribe engineering dis-
cipline to them, it is not inconceivable that a
graphic formalism in the order of Figure 3 could
be developed in support of actual organization
design.

With regard to the diagram in Figure 3, the orga-
nizational dynamics community defines two
styles of work allocations: markets and hierar-
chies. In brief, an enterprise will form into a free
market structure if the nature of the transaction
between two organization units is simple, well-
defined, and universally understood. In this case,
the organization (or person) with work to assign
would survey all possible workers to find one who
is acceptable in terms of availability and cost.
This method is much like a stock buyer who scans
the pool of stockbrokers to find one who will ex-
ecute a buy within an agreeable time and for a
reasonable fee.

In contrast, when the intraorganizational trans-
action is complex, not well-defined, and not uni-
versally understood, the enterprise will establish
a hierarchy, that is, a regulatory organization that
will arbitrarily define the work product, the

IBM SYSTEMS JOURNAL, VOL 31, NO 3, 1992

Table 3 Contents of cells in the time (when) column

Row Perspective Cell Example Event Cyele

1 Planner List of events Major event Major cycie
2 Owner Master schedule Business event Business cycle
3 Designer Processing structure System event Processing cycle
4 Builder Ontrot architecture Execute Component c y l e
5 Subcontractor Timing definition Interrupt Machine cycle

schedule, and the cost that connects the subor-
dinate organizations. This method is much like an
oil company that arbitrarily defines the refining
product slate, schedules, and transfer pricing of
the product from the refinery as it is transferred
to the wholesale or retail distribution organiza-
tion.

There is no requirement that either the entity that
allocates the work or the one to whom work is
allocated be an organization or a person. It may
well be a machine or even some software agent,
as in artificial intelligence systems. Therefore, in-
stead of specifying the columnar abstraction en-
tity as an organization, person, or user, it seems
more appropriate to select a generic name like
agent that might apply to humans or nonhumans.

The connector entity, work, should probably be
interpreted to mean work product to avoid con-
fusing it with the concept of process or function
that falls within the purview of the process col-
umn. Further, work product would be a kind of
user view of materials or process inputs/outputs.
To avoid any confusion between the concepts of
work products and inputs/outputs, it would be
useful to change the original name of the connec-
tor entity in the process column from input/output
to argument, the mathematical term for input to a
function that is the object of a transformation as
inf(x) = K, wherefis the transformation,x is the
input argument, and K is the output.

IBM SYSTEMS JOURNAL, VOL 31, NO 3, 1992

Table 2 shows the kind of information that would
be found in each of the rows of the people (who)
column. The meaning of the entities in the column
changes with the change of perspective from row
to row, and their meaning is consistent with the
other column cells in the same row. That is, the
new cells are consistent with the overall frame-
work, vertically and horizontally.

The time (when) column. Time is abstracted out of
the real world to design the event-to-event rela-
tionships that establish the performance criteria
and quantitative levels for enterprise resources.
For example, from Event 1, product announce-
ment at time to , until Event 2, first customer ship
at timet,, there is a duration (t l - to) . The length
of the duration establishes the external commit-
ments of the enterprise as well as the resource
levels required to meet the commitments. In gen-
eral, the shorter the duration, the more resources
required to meet the commitments. The longer
the duration, the less resources required to meet
the commitments.

Figure 4 is an example of a graphic representation
that might be appropriate for describing the time
characteristics of an enterprise where the vertical
axis is the control axis and the horizontal axis is
the duration axis. The points in time are displayed
as circles, and the durations are shown as cycles.
Table 3 lists the kind of information that would be
found in each of the cells of the when column.

SOWA AND ZACHMAN 597

Figure 4 Sample time-model graphic

598

Table 4 Contents of cells in the motivation (why) COlUmn

ROW Perspective Cell Example Ends Means

1 Planner Objectives list Major objectives Major strategies
2 Owner Business plan Business objectives Business strategy
3 Designer Knowledge Criterion Option

4 Builder Knowledge Condition Action
architecture

Subcontractor
design

Knowledge
definition

Subcondition Step

representations of goal-subgoal trees are used in
game-playing programs and planning programs in
artificial intelligence.

The cell contents in the motivation column as de-
rived according to the framework rules represent
the ends-means-ends motivation shown in Table
4.

The complete six-column framework is shown in
Figure 6.

To illustrate the extended framework with all six
columns, Figure 6 shows the kinds of descriptions
that go into each cell. Figure 7 is a hypothetical
case, showing English descriptions of some of the
data, functions, network, organization, sched-
ules, and strategies of the Oz Car Registration
Authority (OCRA). These descriptions were de-
rived from the specification of a car registration
system that was used to compare several different
methodologies for conceptual schemas. l1

A natural language such as English is universal in
the sense that it can describe anything that can be
described. Yet natural languages have potential
ambiguities. Those ambiguities are both a help
and a hindrance. In the early design stages, they
allow decisions to be deferred until further anal-
ysis has been done. But in the later stages, they
prevent the results from being compiled automat-
ically into executable code. The example in Fig-
ure 7 shows the use of English in an early design
stage. E-R diagrams are a more formal notation
that can represent some of the information ex-
pressed in English, but not all of it. Symbolic
logic, in either the predicate calculus or the con-
ceptual graph notation, is both formal and uni-
versal: it can describe everything that can be de-
scribed, and it can be translated into executable
code.

IBM SYSTEMS JOURNAL, VOL 31, NO 3, 1992

Rules of the framework

The previous two sections of this paper have
shown examples of the ISA framework and the
contents of each cell. This section presents the
rules of the framework in a more abstract way.
The reader may find it helpful to look back at the
examples in order to get a clearer understanding
of the rules.

Rule 1. The columns have no order. Order implies
priorities. It creates a bias toward one aspect at
the expense of others. Traditional programmers,
for example, tend to have a bias toward function.
They usually prefer to see the function column
first in the framework. They start by designing
algorithms that implement the function and leave
the data as an afterthought. In fact, they may even
claim that there is no need to expend resources on
defining other models; that is, the functional or
process models are adequate in themselves. As a
result, all other aspects would be (inadvertently)
ignored or suboptimized.

By the same token, programmers from the data
community prefer that the data column be or-
dered first in the framework because history has
proved that if the data are not designed first, they
will invariably be compromised (suboptimized).
By implication, process and network would be
suboptimized in the interest of preserving the in-
tegrity of the data structure. There are also those
who would claim that the network column should
be first because the location of the data and pro-
cesses really drives the design; they would cause
the other aspects to be suboptimized. Equally,
others might plausibly argue that the people,
time, or motivation column should be first.

In any case, there is no natural order to the col-
umns. Order or sequence implies method, which

SOWA AND ZACHMAN 599

600

WOPE

PLANNER

ENTER-
MODEL

OWNER

SIslEwyQoE

DESIGNER

TECHNOLOGY
MODEL

BUILDER

........

su&
CONTRACTOR

0 ENTIN
DATA

0 RELN

0 ENTITY = CUSS OF
BUSMESS THING

0 ENTtN - BUSINESS ENTIN
0 RELN - BUSINESS CONSTRAINT

&G., "DATA MODZL"

0 ENT I DATA ENTIN
0 RELN - DATA RELATIONSHIP

KG., DATA M%W

0 ENT - SEGMENTlROW
0 RELN I POINTEWKEY

.............
0 Em-FIELD
0 RELN - ADDRESS

E.G., DATA

0 FUNCTION
PUNCllON

0 ARG

u8T Of PRWESBES THE
SUSlNESS PERMRMS

0 FUNCTION I CLASS OF
BUSINESS PROCESS

E.G., "PROCESS FLOW DIMRAM"

0 FUNCTION 4- - BUSINESS PROCESS

+e

0 ARG - WSINESS RESWRCES

E.G., ' U T A FLOW DIAORAM"

0 FUNCTION =APPLICATION FUNCTION
0 ARG I USER VIEW

Ea., '3STRUCTURE CHAW'

n
m

0 FUNCTION -COMPUTER FUNCTION
0 ARG - SCREEWDEVICE FORMAT

0 FUNCTION T LANGUAGE STMT
0 ARG I CONTROL BLOCK

E.G.. NNCTKIN

0 NODE
0 LINK

NETWORK

WHlCH THE BUSNEW OPERATES
LIST OF LOCATIONS IN

0 NODE =MAJOR BUSINESS
LOCATION

E& LoolsTlCS MTWORK

0 NODE - BUINEIS LWATICIN
0 LINK - BUSINESS LINKAGE

E.G., DISTRIBUTED SYSTEM
ARCHITECTURE fl
0 NOM - VS FUNCTION

0 LINK - LINE CHARACTERISTICS
IPROCESSOR. STMIAOE. ETC)

E.G., SYSTEM ARCHll'ECTWE

€!P
0 NODE - HARDWARWSYSTEM

0 LINK = LINE SPEClFICATlONS
SOFTWARE

0 NODE - ADDRESS
0 LINK - PROTOCOL

E.G., NETWORK

0 AGENT
0 WORK

PliOPLE

0 AGENT I MAJOR ORGANIZATION
UNIT

E.G., DRGhNUAWN CHART

0 AGENT A - ORGANIZATION UNIT

0 AGENT A = ROLE

n WORK - WORK PRODUCT

E.G., HUMAN INTERFACE ARCHITECTURE

0 WORK - DELIVERABLE

E.G.,HUWHrfECHNOLOGV
INTERFACE A
0 AGENT I USER
O W O R K - J O B

I I
0 WORK - 'TRANSACTION'
CI AGENT = IDENTIN

Eli.. D R G A N I U ~

3 TIME
TIME

3 CYCLE

O T I M E - MAlOR BUSINESS EVENT

E.G.. MASTER SCHEDULE

0 TIME I BUSINESS EVENT
OCYCLE I BUSINESS CYCLE

E.G., PROCESSING STRUCTURE

0 TIME .I SYSTEMEVENT
OCYCLE - PROCESSING CYCLE

E.G.. CONTROL STRUCTURE

0 TIME -EXECUTE
0 CYCLE = COMPONENT CYCLE

0 TIME - INTERRUPT
0 CYCLE I MACHINE CYCLE

LA., SCHEDULE

3 ENDS
3 MEANS

MOWAllON

LIST OF BUSINESS OOALBIFTRATEGY

-
OENDYMEANS - MAJOR BUS. GOAU

CRITICAL SUCCESS FACTOR

E.G., BUSINESS PLlN
n

0 ENDS I BUSINESS WECTIVE
OMEANS - BUSINESS STRATEGY

E.G.. KNOWLEDGE ARCHITECNRE

n
Y

0 ENDS - CRITERION
U M E A N S - OPTKlN

0 ENDS I CONDITION
0 MEANS I ACTION

.............. I ::::::::::::. I

0 ENDS I SUBCONDITION
0 MEANS = STEP

E.G.. STRATEQV

SEm
PUINNER

SYSTEM
UODEL

DESIGNER

r r r n N O L W V

BUILDER

COMPONENTS

SUB.
CONTRACTOR

WHCTKw(ING
BYSTEW

data column, Column A, for example, has the
simple basic model entity-relationship-entity.
The columnar variable is entity, and the connec-
tor is relationship.

The basic model for each column is actually a
generic metamodel. It is generic because it is the
same for each cell in the column. It is “meta”
because it is a model of the enterprise model. For

example, the enterprise model in Cell A2 might be
comprised of the sequence: employee related to
organization related to customer related to prod-
uct. The metamodel of this model is the abstrac-
tion entity-relationship-entity. In a similar fash-
ion, each column has a simple, basic model that
constitutes the generic metamodel for that col-
umn. Table 5 shows examples for Columns A, B,
and C.

Rule 3. The basic model of each column must be
unique. Uniqueness is essential for any useful
classification scheme. Therefore, no entity or
connector in the basic, columnar model is re-
peated, either in name or in concept. For exam-
ple, entity and relationship are unique to Column
A. Function and argument are unique to Column
B. Entity is not equivalent to function, and rela-
tionship is not equivalent to argument. They may
all be related to one another because they are all
abstractions of the same real-world enterprise,
but they are all separate and unique concepts.

The same logic applies to all of the basic, colum-
nar models. That is, each basic model is unique.

Rule 4. Each row represents a distinct, unique
perspective. This rule is most easily demon-
strated in Rows 2, 3, and 4 which represent the
owner’s, designer’s and builder’s perspectives.
Each perspective is different in that it is dealing
with a different set of constraints relevant to that
perspective. For example:

Owner: Deals with usability constraints, both
aesthetic and utilitarian in the conceptual view
of the end product.
Designer: Deals with the design constraints-
the laws of physics or nature in the logical view
of the end product.
Builder: Deals with the construction con-
straints-the state of the art in methods and
technologies in the physical view of the end
product.

Because each perspective reflects a different set
of constraints, the meaning (or definition) of the
basic entity in a given column will change from
row to row. For example, entity has one meaning
for the owner, another one for the designer, and
yet a different one for the builder. Table 6 shows
examples of those differences for Column A.

Since each basic entity means something different
from the perspectives of the different cells in the

SOWA AND ZACHMAN 601 IBM SYSTEMS JOURNAL, VOL 31, NO 3, 1992

Figure 7 The OCRA example in the six-column framework

Table 5 Components of the generic metamodels for Columns A, B, and C

Column A Column B column c
Data (what) Function (how) Network [where)

, “ “

Basic entity Entity Function Node ” ‘

Connector Relationship Argument Line

Table 6 Changes in the meaning of entity from row to
row of Column A

Row Ferspectlve Basic Entlty

Designer Data entity (logical representation)
Builder Technolagy entity

(physical representation)

data column, the semantic contents of the cells in
the column are different, which means, in turn,
that the structure of the cell models in the same
column is likely to be different. Note how the
meaning changes for all rows and all columns of
Figure 6.

Rule 5. Each cell is unique. Since each column
has a unique basic model that makes each column
unique, and since each row has a different per-
spective that makes the meaning of the basic
model unique to each row, each cell in the frame-
work is unique. That is, no meta entity can show
up in more than one cell. For example:

Business entity can only be found in Cell A2.
Data entity can only be found in Cell A3.

9 Business process can only be found in Cell B2.
Application function can only be found in Cell
B3.

Therefore, the ISA framework serves as a conve-
nient classification scheme or “periodic table” for
information entities. Like chemical elements,

602 SOWA AND ZACHMAN IBM SYSTEMS JOURNAL, VOL 31, NO 3, 1992

these entities may be combined in endless ways to
produce compounds or information systems of
interest to an enterprise.

A corollary to the rule that each cell is unique
(that is, each cell represents a different abstrac-
tion and different perspective-therefore differ-
ent motivation, different purpose, different design
issue, different constraints, etc.) is that different
techniques and different graphic representations
are appropriate for different cells. This corollary
explains the plethora of information systems (11s)
design formalisms that have emerged over the
years. They are all likely to be relevant for some
purposes, but they each address a different set of
issues, and none is completely adequate in itself.
Also, when the formalism for any one cell is ex-
panded to incorporate the notation from another
cell in an attempt to enrich the formalism, it com-
plicates the design problem and may lead to in-
advertent suboptimization of the other indepen-
dent variable. For example, in some application
designs, it may seem appropriate to show a data
store on a data flow diagram for Cell B3. Yet it
may not be clearly understood that the data store
is actually an aggregation of attributes of entities
from the logical data model of Cell A3. There is
a risk that the designer may design a customized
file to satisfy the local requirements of the pro-
cess. In this event, the integrity of the data as
specified by the logical data model may be com-
promised, and the data are unlikely to be reused
or shared by any other process.

The uniqueness of each of the cells also explains
the plethora of methodologies that have evolved.
It would appear that a specific methodology elects
to produce some set (or subset) of cells in some
sequence. The sequence determines the value
system being applied in making the design trade-
off decisions within the cell. That is, the structure
of a cell can be derived from the cell above, the
cell below, or a cell in the same row. The cell that
a methodology causes to be produced first is
likely to have a strong influence on the design
tradeoffs made in the structure of a subsequently
designed cell.

Rule 6. The composite or integration of all cell
models in one row constitutes a complete model
f.om theperspective of that row. This rule derives
from the fact that any one cell of one column is
merely a single abstraction of reality. Therefore,
the sum of all cells in a given row is the most

IBM SYSTEMS JOURNAL, VOL 31, NO 3, 1992

complete depiction of reality from the perspective
of that row. The significance of this rule is that as
additional columns are defined, each new cell de-
scription must be consistent with the perspective
of the row. That is, each cell in a given row can
be defined and has relevance independent of any
other cells in the row, yet each cell is but one
abstraction of the same reality. Therefore, at a
minimum, each cell is related to every other cell
in the same row. In some cases, there may even
be a dependence upon other cells in the row. In
these cases, a change in the structure of one cell
would likely have some kind of effect in any other
cell where a dependency exists. This not only
holds true across a row, but it most certainly
would be true within a column where, by defini-
tion, there is a dependency between any one cell
and the cell above and the cell below. Thus, a
change in any given cell would likely affect the
cell above, the cell below, and potentially, other
cells in the same row where a dependency exists.

It is worthwhile noting that if the nature of the
dependency between cells could be understood
and stored in the repository along with the cell
models, it would constitute a very powerful ca-
pability for understanding the total impact of a
change to any one of the models, if not a capa-
bility for managing the actual assimilation of the
changes.

Rule 7. The logic is recursive. The framework
logic can be used for describing virtually any-
thing, certainly anything that has an owner, de-
signer, and builder who make use of material,
function, and geometry. The logic was initially
perceived by observing the design and construc-
tion of buildings. Later it was validated by ob-
serving the engineering and manufacture of air-
planes. Subsequently it was applied to enterprises
during which the initial material on the framework
was published. In the current paper, it is being
applied to an information systems “enterprise”
wherever the “meta” concept is being used. Sim-
ilarly, it could be applied to a CASE tool manu-
facturer.

These four applications of the framework were
selected for illustration, not by accident, but be-
cause the examples are related. Examination of
the framework graphically depicts the relation-
ship between the product, the enterprise, infor-
mation systems, and the CASE tool manufacturer.
It shows that:

SOWA AND ZACHMAN 603

Figure 8 The enterprise framework as a metaframework

PRODUCT
FRAMEWORK

The owner of the product is the customer of the

The owner of the enterprise is the customer of

The owner of information systems is the cus-

enterprise.

information systems.

tomer of the CASE tool manufacturer.

Similarly,

The enterprise transforms the owner’s view of
the product, through a series of product model
transformations, into the product itself.
The I/S organization transforms the owner’s
view of the enterprise, through a series of en-
terprise model transformations, into the enter-
prise itself.
The CASE tool manufacturer transforms the
owner’s view of the I/S organization, through a
series of 11s model transformations, into the I/S
organization itself.

Since the product is related to the enterprise,
which is related to the I/S organization, which is
related to the CASE tool manufacturer, the respec-
tive frameworks are also related.

For example, Cell A2 of the enterprise framework
(owner’s row, data column) is a model of the
product framework because in manufacturing the
product, the enterprise, by definition, is produc-
ing all of the cells of the product framework.
Therefore, the semantic model of the enterprise
would necessarily have to incorporate all of the

604 SOWA AND ZACHMAN

design artifacts required to build the product, plus
extensions to the model to describe the enterprise
resources being used in the manufacturing pro-
cess. Thus, Cell A2 is a metamodel of the product
framework with extensions that include the en-
terprise resources. See Figure 8.

Cell B2 of the enterprise framework (owner’s
row, process column) is a model of the functions
required to produce all of the cells of the product
framework, extended to include the processes re-
quired to manage the enterprise resources. In this
fashion, Cell B2 is a metamodel (or process
model) of the product framework plus some ex-
tensions.

Cell C2 of the enterprise framework (owner’s
row, network column) is a model of the locations
required to produce all of the cells of the product
framework, extended to include those locations
required for managing the enterprise resources.
In this fashion, the cells of Row 2 (owner’s row)
of the enterprise framework are metamodels of
the product framework extended as required to
manage the enterprise resources.

By the same token, the Row 2 (owner’s row) mod-
els of the I/S framework are the metamodels of the
enterprise framework, with extensions required
to manage the I/S resources.

Similarly, the CASE tool manufacturer framework
Row 2 (owner’s row) cells are the metamodels of
the ISA framework, with extensions required to
manage the CASE manufacturer’s resources.

The CASE tool manufacturer’s framework has
some interesting peculiarities in that it looks very
similar to the I/S organization framework. The
reason is the products of both of these organiza-
tions are applications. The only difference is that
the CASE tool products are applications for build-
ing applications, whereas the 11s organization
products are applications for building (enterprise)
products. Although these frameworks may be
quite the same generically, the instances of the
cell models may differ substantially because the
two organizations are likely to have dramatically
different strategies, methodologies, geography,
etc., which would mean the structure of the mod-
els would depart dramatically. Figure 9 shows the
metarelationships between the frameworks.

IBM SYSTEMS JOURNAL, VOL 31, NO 3, 1992

There is another dimension to the recursiveness
of the framework logic in that in any given en-
terprise, there may be as-is versions and to-be
versions of each of the cell models. Therefore, the
total set of frameworks that may be of interest
(and therefore may require managing) might be
depicted as in Figure 10.

Still another dimension of recursiveness is pos-
sible and is being considered as part of the con-
ceptual schema for the IRDS. It is the possibility
of applying the logic of the framework to the
framework itself. That is, any given cell is a com-
plex engineering product in its own right. It has an
owner, designer, builder, material, function, and
geometry. Therefore, the framework logic could
be applied to each of the cells of the framework
to analyze the design and construction issues that
affect that cell.

Although these three dimensions of recursiveness
(related frameworks, framework versions, and
nesting frameworks) expose the considerable
complexity of the architecture issue, the fact that
the simple logic of the framework can be em-
ployed recursively opens up the possibility of:

Leveraging the reusability of the logic to ad-
vance the state of the art and extend the body
of knowledge
Technically managing the relationships be-
tween all of the models (for the purposes of
configuration management and change assimi-
lation) through such techniques as versioning

Since the storage mechanism (repository) could
not in itself differentiate between one framework
and another, the same repository could be used
for managing all of the frameworks merely as ver-
sions. This factor brings architecture manage-
ment into the realm of feasibility. For this reason
it is imperative to begin to acquire the capabilities
for producing and managing architectures. It is
only a matter of time before the technology will
allow managing enterprise change beyond the
limits of our current imagination.

Before employing the rules of the framework for
defining the other three columns (who, when, and
why), it is necessary to state the caveat once
again. That is, there is not a lot of precedent in the
data processing community for cells in the col-
umns that represent these other three abstrac-
tions. Examples are abundant for the process and

IBM SYSTEMS JOURNAL, VOL 31, NO 3, 1992

Figure 9 Set of interesting metaframeworks

INFORMATION

PRODUCT
FRAMEWORK

4 PRODUCT

Figure 10 Set of framework versions

(VERSIONS)

CASE
MANUFACTURERS
FRAMEWORK

META-
METAMODEL

(VERSIONS)

INFORMATION METAMODEL
SYSTEMS
FRAMEWORK

ENTERPRISE
FRAMEWORK

PRODUCT
FRAMEWORK

(VERSIONS)

MODEL

(VERSIONS)

PRODUCT

J

SOWA AND ZACHMAN 605

Figure 11 An entity-relationship diagram

data columns. Fewer are available in the network
column. But there is a scarcity of good examples
in the people, time, and motivation columns.
Therefore, any definition of cells in these other
three columns must necessarily be more hypo-
thetical and less empirical. The rules of the frame-
work must be adhered to in order to preserve the
conceptual integrity of the classification scheme.

It is also important to note that examples of the
cells in the last three columns have been devel-
oped in other disciplines, including some research
areas in computer science. A great deal of thought
has been devoted to these issues in psychology,
sociology, industrial engineering, organizational
dynamics, artificial intelligence, real-time sys-
tems, game theory, distributed systems, business
administration, and other fields. These fields have
a rich supply of knowledge yet to be tapped and
mapped into the framework in a form that can be
used by the data processing profession. There-
fore, even though the basic concepts defined by
the framework rules are likely to be stable over
time as a classification system, the specific names
and examples are likely to change as more is
learned and as other disciplines can be surveyed
for appropriate contributions.

Overview of conceptual graphs

Conceptual graphs are a system of logic that can
be used in conjunction with other graphic nota-
tions, such as entity-relationship diagrams. '' Un-
like E-R diagrams, however, conceptual graphs
are as general as predicate calculus and can ex-
press all of the relationships and constraints that
affect an enterprise and its information system.
To illustrate the issues, consider the ON relation
for cats on mats, as expressed in three different
modeling languages: E-R diagrams, symbolic
logic, and conceptual graphs. Figure 11 shows an
E-R diagram for the entity type CAT linked by the
ON relation to the entity type MAT.

606 SOWA AND ZACHMAN

The pairs of numbers on the arcs of Figure 11 are
calledparticipation counts. They show the lower
and upper bounds on the number of instances of
each entity type that may be associated with en-
tities of the other type. The pair 0:l on the left
shows that zero or one cat is on each mat, and the
pair 1:l on the right shows that one and only one
mat is associated with each cat. Together, they
imply that every cat is on a unique mat but that
some mats may not have any cats. In symbolic
logic, that same information may be stated in the
basic notation for first-order predicate calculus:

W X) (~ Y) (C ~ ~ (X) 2 (maW A on(x,y)
A (Vz)((mat(z) A on(x,z)) 3 z=y)
A Ww)((cat(w) A on(w,y)) 3 w=x)).

The first line of this formula says that every cat is
on a mat: literally, it may be read For every x,
there exists a y , where ifx is a cat, then y is a mat
and x is on y . The second line says that there is
only one mat for each cat: For every z, i f z is a mat
andx is on z, then z is identical t oy . The third line
says that there is only one cat on each mat: For
every w, if w is a cat and w is on y , then w is
identical to x . The complexity and unreadability
of formulas like these is the main reason why da-
tabase designers and systems analysts do not like
to use predicate calculus.

The need for an extended notation to simplify
such formulas was recognized as early as 1910. In
the Principia Mathernatica, Whitehead and Rus-
sell13 introduced the relational operators E! for
exactly one and E!! for uniqueness. For the op-
erator E!, there is a corresponding quantifier
(3!x), which means that there exists exactly one
x. Uniqueness is more complex, since it must be
expressed by a pair of quantifiers; the operator
E!! corresponds to the quantifiers (Vx)(El!!y),
which mean that for every x there exists a unique
y. With such quantifiers, the second and third
lines of the preceding formula can be eliminated:

Wx)(3!!y)(cat(x) 3 (mat(y) A on(x,y)).

This formula may be read For everyx, there exists
a uniquey, where ifx is a cat, then y is a mat and
x is on y . In 1938, the logician Arnold Schmidt
introducedsorted logic with sort or type labels for
each variable. l4 Such a notation simplifies the for-
mula further:

IBM SYSTEMS JOURNAL, VOL 31, NO 3, 1992

(Vx:cat)(3!!y:mat)on(x,y).

This formula may be read For every cat x, there
exists a unique mat y, where x is on y . The var-
iables x and y are the main features that make this
formula sound unnatural in comparison to En-
glish. A graph notation can reduce or eliminate
the need for variables by showing connections
directly.

Conceptual graphs are a system of logic designed
to map to and from natural languages in as simple
and direct a manner as possible. They are based
on the existential graphs by the logician Charles
Sanders Peirce,15 the dependency grammars by
the linguist Lucien Tesnikre, l6 and the semantic
networks that are widely used in artificial intelli-
gence. l7 They combine extended quantifiers and
type labels in a readable graphic notation. They
have been used and implemented by research and
development groups around the world. And they
have been the subject of seven annual workshops
from 1986 to 1992. For these reasons, the ANSI
Task Group X3H4.6 has chosen them as the basis
for the normative language of the IRDS conceptual
schema. Figure 12 shows the conceptual graph for
the sentence Every cat is on a unique mat.

The boxes in a conceptual graph represent con-
cepts, and the circles represent conceptual rela-
tions. CAT and MAT are type labels that corre-
spond to the sort or type labels in sorted logic, and
V and @unique are quantifiers that correspond to
V and 3!! in predicate calculus. The graph nota-
tion eliminates the variables x and y by using arcs
that link the concepts and relations directly.
When conceptual graphs are mapped to predicate
calculus, variables are assigned to the concept
nodes. The arrow pointing toward the circle
shows the first argument of the relation, and the
arrow pointing away shows the second argument
(relations with more than two arguments have
numbers on the arcs).

To save space on the printed page, Figure 12 can
also be written in a linear notation that uses
square brackets for the concepts and rounded pa-
rentheses for the circles:

[CAT: V+(ON)+[MAT: @unique].

The linear form can also be written with only the
ASCII character set:

IBM SYSTEMS JOURNAL, VOL 31, NO 3, 1992

Figure 12 A conceptual graph

[CAT: @every]->(ON)->[MAT: @unique].

The graphic form is usually the most readable, but
the linear form takes less space on the printed
page, and the ASCII form is convenient for inter-
change between systems.

Putting quantifiers in the boxes with the type la-
bels allows a more direct mapping to English than
the participation counts in E-R diagrams. The
concept [CAT: V] represents the English phrase
every cat, and [MAT: @unique] represents a unique
mat. They also allow a direct mapping to the
quantifiers in sorted predicate calculus: (Vx:cat)
and (3!!y:mat). The pair of participation counts
0:l and 1:l correspond to the quantifier @unique,
but other combinations do not have such a simple
correspondence. To express participation counts
such as 2:7 and 5:15, two conceptual graphs
would be needed:

[CAT: V+(ON)+[MAT: {*}@5:15].
[CAT: {*}@2:7]+(ON)+[MAT: VI.

The first graph may be read Every cat is on 5 to
15 mats; and the second may be read 2 to 7 cats
are on every mat. The symbol {*} is the generic
plural marker, which represents a set of unspec-
ified elements whose type is determined by the
type label of the concept. The quantifier @5:15
indicates that the count or cardinality of the set
ranges from 5 to 15. Getting the cats to sit still long
enough for such a situation to be set up may be a
challenge, but if it can be done, conceptual graphs
can describe it. Furthermore, the description can
be mapped to English in a readable way.

E-R diagrams are primarily used as a metalan-
guage for talking about database designs. They
cannot be used to represent actual instances of
data in the database. Conceptual graphs, how-
ever, can express statements about instances in

SOWA AND ZACHMAN 607

Figure 13 A conceptual graph with instances

CAT: Yojo MAT: #15738

Figure 14 Two graphs for showing a cat chasing a
mouse

the database as well as quantified statements that
represent E-R diagrams. Figure 13, for example,
represents the statement The cat Yojo is on the
mat #15738. In each concept box, the colon sep-
arates the type field on the left from the referent
field on the right. The referent field may contain
quantifiers like V and @unique, plurals like
(*}@5:15, proper names like Yojo, serial numbers
like #15738, or even variables like *x or *y. The
pure graph notation does not require variables,
but the linear form needs them to show cross ref-
erences. The referent field may also be blank: the
concept [CAT] means that there exists a cat, but its
identity is not known.

Since conceptual graphs are designed to repre-
sent the semantics of natural languages, the basic
conceptual relations are derived from the case
relations or thematic roles of linguistic theory.
Examples of those relations include AGNT for the
agent of an action, PTNT for the patient or thing
acted upon, RCPT for the recipient, and INST for
the instrument or means by which an action is
performed. Case relations would be familiar to a
speaker of ancient Latin or modern Russian, but
not to most English speakers. A linguist who is
designing a natural language system to map En-
glish into conceptual graphs would have to know
the case relations. But even without linguistic
training, a database designer or systems analyst

608 SOWA AND ZACHMAN

could use conceptual graphs with no more lin-
guistic detail than E-R diagrams.

Figure 14 shows two conceptual graphs that il-
lustrate two different levels of detail. Both graphs
represent the sentence A cat is chasing a mouse.
The first graph represents the verb chase by the
concept [CHASE]. It uses linguistic relations to
show that the cat is the agent and the mouse is the
patient. The second graph uses the relation
CHASING to link the concepts of the cat and mouse
directly.

Both conceptual graphs in Figure 14 are equally
valid, but they are optimized for different pur-
poses. The first graph with the relations AGNT and
PTNT is more appropriate for mapping conceptual
graphs to English and other natural languages.
The second is more appropriate for a database
design where the linguistic details are not rele-
vant. To show how the two graphs are related, the
following definition relates the high-level relation
CHASING to the concept type CHASE and the low-
er-level relations AGNT and PTNT:

relation CHASING(x,y) is
[ANIMATE: *x]+(AGNT)+[CHASE]-

(PTNT)-+[MOBlLE-ENTITY: *y].

This definition says that the relation CHASING re-
lates an animate being x to a mobile entity y,
where x is the agent of CHASE and y is the patient.
The type labels ANIMATE and MOBILE-ENTITY
specify the most general types that could do the
chasing or be chased. They would include a boy
chasing a kite or a dog chasing a truck. By ex-
panding the definition of CHASING, the second
graph in Figure 14 could be converted to the first;
by contracting the definition, the first graph could
be converted to the second. A top-down design
could start with high-level relations such as CHAS-
ING and later define them in terms of the more
primitive ones. The definitional mechanisms pro-
vide a way to restructure the description in dif-
ferent sets of primitives. l8

Besides concepts for entities and actions, the full
ISA framework requires concepts and relations
for showing times and purposes. In Figure 15, the
graph for a cat chasing a mouse is nested inside a
concept of type SITUATION. The inner context
with the nested graph describes the situation, and
the outer context contains concepts and relations
that say how the situation relates to external

IBM SYSTEMS JOURNAL, VOL 31, NO 3, 1992

times, places, people, and things. The relation
DUR for duration shows that the situation lasted
for a time period of 13 seconds. The relations
FROM and TO show that the time period started at
the time 19:29:32 Greenwich Mean Time (GMT)
and ended at 19:29:45 GMT.

Flowcharts and Petri nets are often used to de-
scribe processes in Column B of the ISA frame-
work. Such diagrams can also be represented in
conceptual graphs by using nested graphs linked
by the succ or successor relation. Figure 16
shows a concept of type PROCESS, which contains
a nested state sl, followed by an event e, followed
by another state s2. The state sl has a duration of
15 seconds, the event e occurs at apoint in time
(PTIM) of 20:23:19 GMT, and the state s2 has a
duration of 5 seconds.

Conceptual graphs are a system of logic that re-
mains readable at many different levels of detail.
Predicate calculus, by contrast, is not very read-
able at any level of detail. The formula operator
43,4 would translate Figure 16 to the following:

(3p)(process(p) A descr(p,
(3~1)(3e)(3~2)(3tl)(3t2)

(state(s1) A event(e) A state(s2) A
succ(s1 ,e) A succ(e,s2) A
time-period(t1) A time-period(t2) A
time(20:23:19 GMT) A
dur(s1 ,tl) A ptim(e,10:23:19 GMT) A
dur(s2,tZ) A
rneasure(tl,15sec) A measure(t2,5sec)))).

The unreadability of such formulas has given
logic a bad reputation among practicing program-
mers. Yet that is not the fault of logic, but of the
predicate calculus notation. Conceptual graphs
are just as formal and precise, but they are a read-
able notation for representing any level of the ISA
framework: enterprise models, information sys-
tem models, technology models, or component
models. Furthermore, they can be translated di-
rectly into English or other natural languages.
Figure 16, for example, could be read as the fol-
lowing sentence in structured English: There is a
process p consisting of a state sl of duration 15
seconds, followed by an event e at time 20:23:19
GMT, followed by a state s2 of duration 5 seconds.
Such English may not be elegant, but it would be
useful for comments and help facilities. The pos-
sibility of generating it automatically from the for-
mal description would ensure that the implemen-

IBM SYSTEMS JOURNAL, VOL 31, NO 3, 1992

Figure 15 Showing the duration of a cat chasing a
mouse

+

1

1 TIME: 19:29:32 GMT I I TIME: 19:29:45 GMT I

Figure 16 A process described by a conceptual graph

PROCESS:

1
EVENT: *e TIME: 20:23:19 GMT

I

STATE:*& TIME-PERIOD: @ 5 SEC

tation and the documentation would always
agree.

Although conceptual graphs are general enough
to represent every cell of the ISA framework, it is
not necessary to replace the older notations. E-R

SOWA AND ZACHMAN 609

Figure 17 Representing four cells of the ISA framework

ENTERPRISE:

WHAT? HOW?

ENTERPRISE:

INFORMATION SYSTEM: DATA: { =3?-]-

diagrams are adequate to represent a subset of
logic, and they can be formally translated into
conceptual graphs. Any design that has been rep-
resented in E-R diagrams, data flow diagrams, or
even flowcharts need not be rewritten. Instead, it
can be mapped into conceptual graphs without
change. Systems analysts who are familiar with
the older technology need not change their ways
of thinking until they feel the need to do so. The
ANSI IRDS X3H4.6 Task Group has established
some guidelines for migrating from one version of
the IRDS standards to another.'

Any conceptual schema represented in the cur-
rent ANSI standards must be migratable to the
new standards without manual intervention.
Design tools based on the current standards
may continue to be used indefinitely, and new
tools should be upward compatible with them.
Logic is general enough to represent any de-
sign; conceptual graphs are a readable graphic
notation for all of logic, but no systems analyst
should be forced to use the new notations for
any task for which the old notations are ade-
quate.

Conversions from one system to another rarely
happen overnight, and new systems must be able
to coexist with the old.

Representing the ISA framework in
conceptual graphs
Conceptual graphs can describe the content of
any cell in the ISA framework. Even more impor-

610 SOWA AND ZACHMAN

tantly, they can describe the relationships be-
tween cells. All of the information in one cell of
the ISA framework can be placed in a single con-
cept box. That concept would be a context that
contained a set of graphs representing the con-
tents of the cell. Figure 17 shows four concepts,
each of which contains a set of graphs that rep-
resent one of the ISA cells. These four concepts
represent the cells of Columns A and B, Rows 2
and 3. The NAME relation shows that the entities
in Row 2, the enterprise row, are named by data
in Row 3, the information system row. The MODL
relation shows that the processes in Row 2 are
modeled by functions in Row 3. The PTNT relation
shows that the processes in Column B operate on
the entities (the patients) in Column B. And the
ARG relation shows that the functions in Column
B take their arguments from the data in Column
A.

At the overview level of Figure 17, the graphs
inside the boxes are not readable. But with an
interactive display, it would be possible to zoom
in on any box to examine its contents. It would
also be possible to zoom out and see all 30 cells
of the framework nested inside a larger concept
box. At an even higher level, the concept box
representing version 1 of a framework could be
related to the box for version 2 and another box
for a version 3 that was still in the planning stage.
Conceptual graphs can be used as the language
for describing each level as well as the metalan-
guage for talking about how the different levels
relate to one another.

IBM SYSTEMS JOURNAL, VOL 31, NO 3, 1992

Figure 18 All columns have equal status
~~

Rule 1. The columns have no order. Figure 1
shows the original ordering of the ISA framework.
Figures 6 and 7 show the additional three col-
umns. But the particular ordering is merely a his-
torical accident. Figure 18 shows the six columns
in a hexagon, where each one is related to every
other. The traditional tabular order is merely a
concession to paper or flat computer displays.
Graphs eliminate the restrictions and permit any-
thing in any column to be linked directly to any-
thing in any other column.

Rule 2. Each column has a simple, basic model.
In terms of conceptual graphs, this rule implies
that there is one basic concept type for each col-
umn, which answers the question word at the
head of the column. All of the graphs that de-
scribe any cell in that column assert some infor-
mation about some subtype of that basic type.
Following are the basic concept types as depicted
in Figure 18 for each column:

1. The answer to the question what is some type
of entity. For Rows 1 and 2, the entities are
real-world objects. For Row 3, they are logical
information types in the 11s model. For Row 4,
they are physical data types in the technology
model. For Row 5 , they are more specialized
data types for each component.

2. The answer to the question how is some type
ofprocess. For Rows 1 and 2, they are real-
world processes. For the lower rows, they are
computational functions that model the pro-
cesses.

3. The answer to the question where is some type
of location. For the top two rows, they are
locations in the world. For the lower rows,
they are logical or physical nodes in a com-
puter network.

4. The answer to the question who is some type
of role played by a person or a computational
agent. For Rows 1 and 2, they are persons who
play some role in the enterprise. For the lower
rows, they may be programs that act for the
user at the higher level.

5. The answer to the question when is time, a
subtype such as date, or a time that is coinci-
dent with some event.

6. The answer to the question why is some goal
or subgoal that provides the reason that mo-
tivates the model for that row.

Each of these basic concept types is related to
other concept types by various relations. Those
other types may be included in the graphs spec-
ified in that column, but they provide auxiliary
information that is subordinate to the basic con-
cept type for the column.

IBM SYSTEMS JOURNAL, VOL 31. NO 3, 1992 SOWA AND ZACHMAN 611

Figure 19 Representing three rows in Column A

ENTERPRISE:

INFORMATiON
SYSTEM:

ECHNQLOGY:

MODEL: MUSTANG

J
1

+ 4

t t
VARIABLE: SERNO VARIABLE: MODELID

Rule 3. The basic model of each column must be
unique. Since each column provides the answer
to a different question, no two columns focus on
exactly the same information. Since all columns
are related, the graphs in each column may con-
tain concepts and cross references to other col-
umns. But the central concept types in each col-
umn are unique.

Rule 4. Each row represents a distinct, unique
perspective. Since each row presents a perspec-
tive on a different model from the point of view of
a different role (planner, owner, designer, builder,
subcontractor), each row contains different con-
cepts that provide a different level of description.
Figure 19 shows three different rows in Column A.

All the concept types in Figure 19 are subtypes of
entity: CAR, MODEL, SERIAL-NO, MODEL-NAME,
and VARIABLE. The types in Row 2, the enterprise
model, describe real-world entities, such as cars
and models. The types in Row 3, the I/S model,
describe logical information types, such as serial
numbers and model names. The types in Row 4,
the technology model, describe implementation
details, such as variables in some programming
language. The NAME relation links the entities in
Row 2 to the information types in Row 3. The
REPR (representation) relation links the informa-

612 SOWA AND ZACHMAN

tion types in Row 3 to the implementation types
in Row 4.

Rule 5. Each cell is unique. This rule follows from
Rules 3 and 4.

Rule 6. The composite or integration of all cell
models in one row constitutes a complete model
from theperspective of that row. When a system
is completely specified, all the conceptual graphs
in each cell of a given row represent a complete
specification of the system at that level. To see
the kind of information at each level, read across
the rows of the OCRA example in Figure 7.

Rule 7. The logic is recursive. The ISA framework
is recursive in several different ways. In one
sense, it can serve as a metamodel to describe
itself since it is general enough to describe the
construction of any system, it can also describe its
own construction. As another kind of recursive-
ness, it can describe entities and states that have
parts and subparts nested inside one another to any
depth. Figure 16, for example, might represent the
process of blowing out the candles on a birthday
cake. The state sl would represent the candles
burning for 15 seconds while the guests sing “Hap-
py Birthday.” Then event e is the act of blowing out
the candles, and state s2 represents the candles
smoking for 5 seconds. Figure 20 is an expansion of

IBM SYSTEMS JOURNAL, VOL 31, NO 3, 1992

Figure 20 Expanded description of state s i in Figure 16

STATE:

* s1

SONG: HAPPY BIRTHDAY

state sl to show the nested graphs that describe
the candles burning and the guests singing.

In Figure 20, the details of the singing are not
described. Even though singing is a process with
sound and movement, those details are unimpor-
tant at this level of description, and the entire
process may be considered a single, unchanging
state. If the details of the singing were significant,
the box of type SING could be expanded to a pro-
cess with each note represented as a separate
event. On a sheet of paper, it is not possible to
show all of the nested levels with equal clarity,
but an interactive display would allow the viewer
to zoom in or out on any box.

At a larger level, Figure 21 shows the entire birth-
day party with the process box of Figure 16 nested
inside. In the box for the birthday party, the top
graph says that 40 guests x are giving presents to a
person named Marvin. There are also 50 candles y
on a cake. Inside the nested process box, the first
state is described by graphs for the candles y burn-
ing and the guests singing “Happy Birthday. ” The
next event is described by a graph for Marvin blow-
ing out the candles y. And the last state is described
by a graph for the candles generating smoke.

The example of a birthday party illustrates the
conceptual graph notation with a familiar situa-
tion. But exactly the same techniques could be
used to describe a manufacturing process, a
courtroom trial, or the steps in the execution of a
computer program. For any of these purposes,
the subtypes of SITUATION could be described by
nests of contexts containing conceptual graphs.
Other notations for describing processes and
events-flowcharts, state-transition diagrams,
data flow diagrams, or Petri nets-could be trans-
lated to similar nests of conceptual graphs.

IBM SYSTEMS JOURNAL, VOL 31, NO 3, 1992

An architecture for the information age

Dramatic improvements in the price-performance
of information technology and the escalation of
the rate of change show no signs of abatement. In
the words of Alvin Toffler, “Knowledge is
change . . . , and accelerating knowledge, fueling
the great engine of technology, means accelerat-
ing change.”” Gone are the days of computers
for simple calculations. We are only now begin-
ning to see the enormous complexity of integrat-
ing information technology into the very fabric of
our enterprises. Soon, the enterprise of the infor-
mation age will find itself immobilized if it does
not have the ability to tap the information re-
sources within and without its boundaries.

In this scenario, it is little wonder that a frame-
work for information systems architecture finds
such widespread applicability. It would be im-
possible for man or machine to successfully ac-
commodate the complexities of today’s enter-
prise without some kind of logic structure. Every
discipline apparently finds a classification scheme
or periodic table for organizing knowledge and
forming a basis for constructing more complex
theses. The ISA framework is a contribution in
this regard. It is not so much an invention as it is
an observation-an observation of some (appar-
ently) natural rules for segmenting an enterprise
into understandable parts without losing the def-
inition of its total integration.

The logic structure or rules of the framework are
generic. They can be used for structuring the de-
scription of any complex object. The framework
was first discovered by observing how the man-
ufacturing discipline segments the descriptions of
complex engineering products for the purposes of

SOWA AND ZACHMAN 613

Figure 21 Nested contexts for describing a birthday party

BIRTHDAY PARTY:

CANDLE: (*)@50 *y

PROCESS:

STATE:

TIME PERIOD: @ 15 SEC

SONG: HAPPY BIRTHDAY

EVENT:

PERSON: MARVIN TIME: 20:23:19 GMT

TIME PERIOD: @ 5 SEC

design and manufacture. It would appear that the Establishing a baseline of descriptive represen-
use of the design artifacts are several including: tations for managing changes in the product

Partitioning the design tradeoff decisions into
manageable, independent variables These are precisely the same reasons why the ISA
Ascribing appropriate design formalisms for framework is interesting for segmenting the de-
each variable scriptions of the enterprise: for separating inde-

during and after its production

614 SOWA AND ZACHMAN IBM SYSTEMS JOURNAL, VOL 31, NO 3, 1992

pendent variables into understandable, design-
able components; for developing appropriate
design formalisms; and for establishing an enter-
prise infrastructure in which change can be as-
similated in a manageable fashion.

Until recently, these architecture and modeling
concepts were somewhat theoretical and merely
intellectually entertaining to the practicing data
processing professional. Modeling formalisms
had evolved and were maturing, but the resultant
models were of minimal value since they tended
to be of such a high level of generality that they
were useless for design purposes, or at such a low
level of detail that they could communicate to no
one but the person who built them. Furthermore,
there was nowhere to put them except on paper,
or on large walls. That made it virtually impos-
sible to locate a given design component, search
for patterns, change the structure, or keep it cur-
rent, much less perform configuration manage-
ment and version control or zoom in and out for
communicating to different audiences.

It is only the advent of an automated model stor-
age facility or repository that brings any of this
into the realm of feasibility and makes architec-
ture a reality. It does not mean to suggest that all
of these ideas will be immediately available in any
particular repository product. It only means that
they come into the realm of feasibility as repos-
itory technology becomes a reality. Even though
early repository-type products are nowhere near
ready to perform the kinds of services mentioned,
the very existence of an automated storage mech-
anism for models makes it clear that architecture
is no longer mere intellectual entertainment. It
will become an imperative for any enterprise that
intends to be a serious player in the information
age.

Acknowledgments

John Zachman is indebted to Steve Pryemybida
of Northrop for work relative to the IDEF activity
and to Keri Anderson Healy of Model Systems,
Michael Eulenberg of the City of Seattle, and Bill
Babichuk of Ontario Hydro for work relative to
the GUIDE Project on Information Architecture.
Their contributions were invaluable in the efforts
to define the last three columns. John Sowa would
like to thank the members of the AD/Cycle Ar-
chitecture Group and the ANSI X3H4.6 Task

IBM SYSTEMS JOURNAL, VOL 31, NO 3, 1992

Group for many stimulating discussions in ana-
lyzing and representing a variety of IIS issues.
Those discussions have helped to clarify the re-
lationships between the levels of the ISA frame-
work and represent them in conceptual graphs.

*Trademark or registered trademark of International Business
Machines Corporation.

Cited references and note

1. J. A. Zachman, “A Framework for Information Systems
Architecture,” IBM Systems Journal 26, No. 3, 276-292
(1987).

2. C. Loosley, “Separation and Integration in the Zachman
Framework,” Database Newsletter, Database Research
Group, Boston 20, No. 1, 3-9 (1992).

3. J. F. Sowa, Conceptual Structures: Informution Process-
ing in Mind and Machine, Addison-Wesley Publishing
Co., Reading, MA (1984).

4. J. F. Sowa, “Towards the Expressive Power of Natural
Language” in Principles of Semantic Networks, J. F.

CA (1991), pp. 157-189.
Sowa, Editor, Morgan Kaufmann Publishers, San Mateo,

5. ANSI X3H4.6 Task Group, Model Unification for
Data Repositories, Technical Report X3H4I92-003,
American National Standards Institute, New York
(July 1992).

6. V. J. Mercurio, B. F. Meyers, A. M. Nisbet, and G. Ra-
din, “ADICycle Strategy and Architecture,” IBM Sys-
tems Journal 29, No. 2, 170-188 (1990).

7. S. L. Montgomery, ADICycle: ZBM’s Framework forAp-
plication Development and CASE, Van Nostrand Rein-
hold, New York (1991).

8. The original article’ called this the “model of the infor-
mation system.” But the words “information system” im-
ply the technology used for implementation. If the tech-
nology consisted of paper and filing cabinets handled by
clerks, the design would likely be called a “system” rather
than an “information system.” Therefore, the label has
been generalized to “system model” to avoid excluding
any kind of system.

9. T. W. Malone, J. Yates, and R. I. Benjamin, “Electronic

of the ACM 30, No. 6, 484497 (June 1987).
Markets and Electronic Hierarchies,” Communications

10. T. A. Bruce, Designing Quality Data Bases, Dorset
House (1991).

11. Concepts and Terminology for the Conceptual Schema
and the Information Base, J. J. van Griethuysen, Editor,
ISOITC97ISCS-N 695, International Organization for
Standardization, Geneva (1987).

12. P. P. Chen, “The Entity-Relationship Model-Toward a
Unified View of Data,”ACM Transactions on Database
Systems 1, No. 1, 9-36 (1976).

13. A. N. Whitehead and B. Russell, Principia Mathemntica,
2nd edition, Cambridge University Press, Cambridge -
(1925).

14. A. Schmidt, “Uber deduktive Theorien mit rnehreren

485-506 (1938).
Sorten von Grunddingen,” Mathematische Annalen 115,

15. D. D. Roberts, The Existential Graphs of Charles S.
Peirce, Mouton, The Hague (1973).

SOWA AND ZACHMAN 615

16. L. Tesnibre, Elgments de Syntaxe Structurale, 2nd edi-
tion, Librairie C. Klincksieck, Paris (1965).

17. J. F. Sowa, “Semantic Networks,” Encyclopedia ofAr-
tificial Intelligence, Second Edition, S. C. Shapiro, Edi-
tor, Wiley, New York (1992), pp. 1493-1511.

18. J. F. Sowa, “Definitional Mechanisms for Restructuring
Knowledge Bases,” in Methodologies for Intelligent Sys-
tems, 5, Z. W. Ras, M. Zemankova, and M. L. Emrich,
Editors, North-Holland Publishing Co., New York
(1990), pp. 194-211.

19. A. Toffler, Future Shock, Random House, New York
(1970).

Accepted for publication April 30, 1992.

John F. Sowa IBMEducation Center, 500 ColumbusAvenue,
Thornwood, New York 10594. Mr. Sowa is a member of the
IBM Systems Research Education Center. After graduating
with a B.S. in mathematics from the Massachusetts Institute
of Technology in 1962, he joined an applied mathematics
group at IBM. Four years later he attended graduate school at
Harvard University, earning an M.A. in applied mathematics
under the IBM Resident Graduate Study Program. At IBM, he
has worked in various areas of computer systems, including
compilers, programming languages, and system architecture.
Since 1976, he has been doing research and teaching on arti-
ficial intelligence and on applications to natural languages,
expert systems, and database query. His theory of conceptual
graphs has been adopted by a number of research and devel-
opment groups throughout the world. Recently he has been
working on logic-based standards for information interchange
with the ANSI X3H4 Committee on IRDS, the IS0 Special
Group on Conceptual Schemas, and the DARPA-sponsored
Knowledge Sharing Effort.

John A. Zachman Zachman International, Suite 337, 2222
Foothill Boulevard, La Caiiada, California 91011. Having re-
tired from IBM in 1991, Mr. Zachman now operates his own
education and consulting business. He joined IBM in 1965 and
held various marketing-related positions. He has been focus-
ing on planning and information strategies and architectures
since 1970 and has written a number of articles on those sub-
jects. Known not only for his work on information systems
architecture, he was also an early contributor to IBM’s Bus-
iness Systems Planning and to the “intensive planning” tech-
nique. He travels worldwide, teaching and consulting. Mr.
Zachman holds a degree in chemistry from Northwestern Uni-
versity. Prior to working for IBM, he served for a number of
years as a line officer in the U.S. Navy and is a retired Com-
mander in the U.S. Naval Reserve. Among his current activ-
ities, he serves as a special advisor to the School of Library
and Information Management at Emporia State University, is
a member of the Advisory Council to the School of Library
and Information Management at Rosary College, River For-
est, Illinois, and serves on the board of directors for the Re-
pository/AD Cycle Users Group.

Reprint Order No. G321-5488.

616 SOWA AND ZACHMAN IBM SYSTEMS JOURNAL, VOL 31, NO 3, 1992

